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Figure 5. Regions of the world with intact or no longer intact large carnivore guilds (one or more species). Note that regions with high
historic large carnivore richness (like Southeast Asia) seldom have intact guilds. Altogether, intact guilds make up 34% of the world’s
land area while 96% of land (excluding Antarctica) once contained one or more large carnivores.

Eighty eight per cent (22/25) of the large carnivores had range contractions of 20% or more (figure 2).
This is substantially more than the reported 40% (17/43) of North American carnivores and ungulates
with range contractions of at least 20% [9]—a difference probably due to the greater vulnerability of large
carnivores to anthropogenic threats, many of which continue today.

By giving historical context to current ranges, our results show the extent to which large carnivores
have been extirpated from Europe despite recent reports of large carnivore recoveries there [30]. In certain
cases, range contraction patterns appear to have occurred due to unusual, species-specific circumstances.
For example, the red wolf’s current range is due to a planned re-introduction and the dingo’s current
range is limited by barrier fencing spanning across parts of Australia. Moreover, the dingo’s historic
range is itself due to an introduction several thousand years ago. The unique circumstances for each
large carnivore mean care must be taken when trying to interpret range contractions at the level of
individual species. Therefore, we have emphasized composite range contraction maps and figures
showing broad trends, changes in guilds containing many species, and modelling range contractions
for all large carnivores pooled together.

4.2. Family and body mass
The finding that species’ taxonomic family and body mass do not appear to be strongly predictive of
range contraction extent (electronic supplementary material, figure S2) appears to contradict previous
work showing that extinction risk is higher for larger-bodied carnivore species [3,31]. It is possible that
the lack of apparent relationship between species body mass and percentage range contraction is due to
the limited number of observations (only 25 large carnivores), which makes statistical hypothesis testing
at the level of individual species difficult, particularly once spatial and phylogenetic dependence have
been modelled. On the other hand, the lack of relationship could mean that extrinsic environmental
factors (e.g. human, cattle density) are more predictive of range contractions than intrinsic factors (e.g.
body mass). This is consistent with the more limited body mass range spanned by large carnivore species
relative to the ranges spanned by the taxa considered in previous analyses [3,31].

4.3. Composite maps and results
As expected, historic and current large carnivore richness are strongly correlated spatially (figure 3).
Large regions of the eastern United States and Europe have lost 100% of their large carnivores (figure 3).
The fact that this level of loss has not occurred in many other regions with high HPD suggests that there
are other key drivers of carnivore conservation outcomes (e.g. human culture and intensive livestock),
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as supported by our model results (electronic supplementary material, figure S4). The biomes where
the lowest loss in mean large carnivore richness occurred tend to be those with low rural population
densities and limited agriculture, consistent with general human impacts (including agriculture) being
linked to range contractions (electronic supplementary material, figures S1 and S3) [32].

4.4. Guild analysis
Large carnivore guilds, particularly those outside the far North have undergone substantial reductions
in area since historical times (figure 5). This is notable as conservation may be more readily accomplished
at the level of whole predator guilds. While carnivore species abundances may vary inversely due
to competitive exclusion [33], there are also well-documented facilitative relationships among large
carnivore species. For example, through trophic cascades, grey wolves can indirectly benefit berry-
producing shrubs, providing food for grizzly bears [34]. Many large carnivores (e.g. brown hyenas)
benefit from scavenging carcasses left by other carnivore species [35]. Another intriguing possibility is
that of interspecific cooperation among large carnivores. Grey wolves and striped hyenas have been
documented travelling together, possibly cooperating to benefit from the wolves’ superior ability to
subdue large prey and the striped hyenas’ better sense of smell and ability to break large bones [36].
Facilitative interactions among large carnivores mean that the extirpation of one or more species could
negatively impact the others. Another reason to attempt conservation at the scale of guilds is that it is
often easier to focus conservation efforts around certain ‘flagship’ large carnivore species. While some
of the most popular flagship species are large carnivores (e.g. grey wolves and tigers), not all large
carnivores are well recognized [37]. Conservation programmes centred around flagship large carnivores
that maintain adequate habitat, reduce trapping and protect shared prey base may benefit some of the
lesser known large carnivores like clouded leopards [2].

When assessing the coverage of intact carnivore guilds, we treated co-occurring large carnivores as
forming a single guild. However, these species can also be divided into functional groups such as ‘bone
crushers’, ‘stalk and ambush carnivores’, and ‘pursuit carnivores’ based on their method of hunting and
other characteristics [38]. Our treatment of co-occurring large carnivores as forming a single guild allows
for the possibility of complex emergent predator effects that span multiple functional groups [38]. For
example, co-occurring wolves and brown bears have well-documented emergent effects despite being in
different functional groups [39].

4.5. Model results
The strong positive estimated effect of cattle density on the likelihood of range contraction (electronic
supplementary material, figure S4) is consistent with the literature on large carnivore conservation
and livestock. There are several mechanisms by which cattle and other extensively grazed livestock
can adversely impact large carnivores. Cattle compete with wild ungulates, potentially reducing the
availability of the carnivores’ natural prey. This prey depletion leads to less food available for carnivores,
reducing their abundances and possibly leading to increased human–carnivore conflict related to
livestock depredation [2]. Similarly, loss of prey base was also probably a major driver of the Pleistocene
large carnivore range contractions and extinctions as megaherbivores in many regions appear to have
been primarily predator-limited prior to the arrival of human hunters [40]. Regardless of prey availability
issues, real or perceived risks to livestock may lead humans to persecute carnivores [41]. The conversion
of natural landscapes to cropland reduces the availability of wild prey for carnivores and brings them
into closer contact with humans, helping to explain the observed positive association between cropland
and range contractions. Higher rural population density may also put humans and carnivores in close
contact, consistent with the positive estimated effect [10].

Human tolerance of large carnivores, government policy and other social factors are probably very
important predictors of range contractions, but we lacked the data to assess their effects. Even in areas
with substantial livestock and cropland, carnivores may be able to persist depending on human attitudes.
For example, leopards and spotted hyenas were found to persist in a cropland-dominated region of
western Maharashtra, India with more than 300 people per km2 [42]. Similarly, spotted hyenas have
been observed in highly populated regions of Ethiopia despite a lack of natural prey as they are able to
subsist on garbage and livestock [43].
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4.6. Limitations
There are several key limitations associated with our use of historic range maps. These maps tend to have
low resolution, not showing holes in species’ historic ranges or small ‘islands’ [9]. We attempted to deal
with this limitation by focusing on broad patterns and trends in species’ range contractions, potentially
mitigating issues associated with fine-scale range map accuracy. In addition to their coarse scale, the
range maps do not include information on species abundances, which can vary greatly across species’
ranges. This means that we were unable to assess changes in regions with ecologically effective predator
densities—a key benchmark for conservation success [44]. There may also be variation in both historic
and current range map accuracy from species to species, with particularly coarse historic range maps
being associated with overestimates of percentage range contraction. The extents of range contractions
may also be overestimated by the lack of range expansions in our core map set (figure 1). Although
large carnivore ranges may have expanded in some cases, we found no evidence of substantial range
expansions (relative to the year 1500) in the literature. Most of the apparent range expansions in the raw
range map set were very small and likely to be the result of mapping errors, making potential range
expansions a relatively minor source of error in our analysis. Extending the historic ranges to cover areas
of apparent expansion resulted in a median increase in raw historic range area of 0.13% (maximum
increase: 3.3%). Our range map set is also limited in that it does not show regions of hybridization
(arguably a form of range contraction), which are important for canid species such as dingoes [45] and
red wolves [46].

The modelling portion of our analysis has an additional limitation in that model covariates (human
and cattle density and cropland) are relatively current, while the range contraction process may have
begun centuries ago. However, our results may still be interpretable, as carnivore ranges have probably
contracted the most within the last hundred years and current covariate values are probably strongly
correlated with past values. That is, regions with high rural population density today probably had
relatively high rural population density in the recent past and so on. We have focused on models at the
global scale (using all ranges together) to avoid the possibility of spurious correlations that could occur
when fitting models at the level of individual species due to inaccuracies in individual range maps. The
model (and other results) apply only to the species in our analysis and thus may not be relevant to
semi-aquatic large carnivores, medium-sized carnivores or other taxa.

4.7. Conservation implications
This analysis provides several key insights into how best to conserve threatened large carnivore
populations. The general lack of relationship between life-history traits and range contraction means
that most large carnivore species are potentially at risk of range contraction and other associated
drivers of extinction risk (e.g. population declines). As many carnivores were historically sympatric
and are at high risk of future range contraction, conservation should be accomplished at the level of
whole predator guilds when possible. Conservation of entire predator guilds has the added benefit
of maintaining important species interactions and emergent ecological effects caused by co-occurring
predators. Guild conservation can be accomplished, for example, by expanding and strengthening
protected area networks or by increasing human tolerance of predators. Although increasing rural
human population densities are linked to range contractions and significant future population increases
are projected, many large carnivores are resilient, particularly when human attitudes and policy favour
their conservation. This helps to explain the large carnivore recoveries observed in Europe and elsewhere
(e.g. grey wolves in the continental United States). Similarly, although our results associate increasing
cropland and cattle density with range contractions, this relationship may be limited when predator-
friendly agriculture methods are employed—an area where more research and practice is needed.
Ultimately, changes in species’ ranges are ongoing, dynamic processes and, in the face of newer threats
like anthropogenic climate change, it is critical to continue to monitor large carnivore ranges to ensure the
future of these species. Our analysis serves as a starting point for this by providing an accurate measure
of the historic and current status of the world’s largest carnivores.

Data accessibility. Historic range map sources and range contraction statistics are given in electronic supplementary
material, tables S1 and S2.
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