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Global forest loss disproportionately erodes 
biodiversity in intact landscapes
Matthew G. Betts1,2*, Christopher Wolf1,2*, William J. Ripple1,2,   Ben Phalan1,3, Kimberley A. Millers4, Adam Duarte5, 
Stuart H. M. Butchart3,6 & Taal levi1,4

Global biodiversity loss is a critical environmental crisis, yet the lack 
of spatial data on biodiversity threats has hindered conservation 
strategies1. Theory predicts that abrupt biodiversity declines are 
most likely to occur when habitat availability is reduced to very low 
levels in the landscape (10–30%)2–4. Alternatively, recent evidence 
indicates that biodiversity is best conserved by minimizing human 
intrusion into intact and relatively unfragmented landscapes5. 
Here we use recently available forest loss data6 to test deforestation 
effects on International Union for Conservation of Nature Red List 
categories of extinction risk for 19,432 vertebrate species worldwide. 
As expected, deforestation substantially increased the odds of a 
species being listed as threatened, undergoing recent upgrading 
to a higher threat category and exhibiting declining populations. 
More importantly, we show that these risks were disproportionately 
high in relatively intact landscapes; even minimal deforestation 
has had severe consequences for vertebrate biodiversity. We found 
little support for the alternative hypothesis that forest loss is most 
detrimental in already fragmented landscapes. Spatial analysis 
revealed high-risk hot spots in Borneo, the central Amazon and the 
Congo Basin. In these regions, our model predicts that 121–219 
species will become threatened under current rates of forest loss 
over the next 30 years. Given that only 17.9% of these high-risk 
areas are formally protected and only 8.9% have strict protection, 
new large-scale conservation efforts to protect intact forests7,8 are 
necessary to slow deforestation rates and to avert a new wave of 
global extinctions.

A critical question in global efforts to reduce biodiversity loss is 
how best to allocate scarce conservation resources. To what extent 
should conservation be focused on modified and fragmented land-
scapes where threats are potentially greatest, versus landscapes that 
are largely intact9? Although it is expected that both approaches have 
value, in some human-influenced habitats, many species seem sur-
prisingly resilient to habitat loss and fragmentation, and can coexist 
with humans in highly modified landscapes10,11, provided that habitat 
loss does not exceed critical thresholds2. Theory predicts that abrupt 
biodiversity declines are most likely to occur when habitat availability is 
reduced to very low levels in the landscape (10–30%)3,4,12. Alternatively, 
recent evidence indicates biodiversity is best conserved by minimizing 
human intrusion into intact and relatively unfragmented landscapes, 
which implies concentrating the impacts of anthropogenic disturbance 
elsewhere5,13. This is because initial intrusion may result in rapid deg-
radation of intact landscapes, not only via the direct effects of habitat 
loss, but also the coinciding effects of overhunting, wildfires, selective 
logging, biological invasions and other stressors5. Such evidence has 
led to recent calls to increase the protection of substantial intact areas 
of the Earth’s terrestrial ecosystems14,15. Testing the extent to which 
these alternative hypotheses explain patterns of extinction risk globally 

can improve the effectiveness of conservation efforts and inform the 
formulation of policies, affecting the future of life on Earth.

Recent advances in remote sensing have enabled the development 
of a spatially explicit, high-resolution global dataset on rates of forest  
change6, which provide the capacity to quantify the effects of contem-
porary global forest loss on biodiversity16. We quantified the association 
between global-scale forest loss and gain within the ranges of 19,432 
species and their International Union for Conservation of Nature 
(IUCN) Red List category of extinction risk, recent genuine changes  
in extinction risk, and overall population trend direction. The species 
spanned three vertebrate classes, and included 4,396 (22.6%) listed as 
threatened (Vulnerable, Endangered, or Critically Endangered) and 
15,214 (78.3%) associated with forest habitats. Under the ‘habitat  
threshold’ hypothesis, we expected the effects of recent forest loss to 
be most detrimental for species that have already lost a substantial 
proportion of forest within their ranges. Under the ‘initial intrusion’ 
hypothesis, we expected species with relatively intact forest within their 
ranges to show the most severe effects of deforestation.

We obtained range maps for amphibians and mammals from the 
IUCN Red List17 and those for birds from BirdLife International and 
NatureServe18. We classified species as ‘non-forest’, ‘forest-optional’, 
and ‘forest-exclusive’ based on the IUCN Red List habitat classifica-
tion data17. Within each species’ range, we used fine-resolution forest- 
change data (2000–2014)6 to calculate the amount of recent forest 
cover, loss, and gain (Fig. 1). Given that many species were assessed 
for the Red List in the early period of our recent forest-loss data  
(or even before this; Methods), it would be ideal to have contemporary 
forest loss data from before 2000. The most spatially contiguous dataset  
for 1990–200019 covered > 80% of the ranges for only 58.7% of the  
species in our analyses. However, locations of forest loss were highly 
spatiotemporally correlated at the scale of species’ ranges between 
1990–2000 and 2000–2014 (Methods, Intermediate-term forest change; 
Extended Data Fig. 7).

We also expected that historical deforestation over much longer 
temporal scales could influence species vulnerability, a phenomenon 
known as ‘extinction debt’20,21. We calculated historical forest loss as 
the difference between the extents of area within species’ ranges that 
historically supported forest cover and the area that remained forested 
in the year 20006 (Fig. 1). We also calculated the mean ‘human foot-
print’ value22 within each species’ range, because forest loss could be 
confounded with other broad-scale anthropogenic pressures (Fig. 1). 
Using these data, we fit a spatial autologistic regression model to test 
whether forest loss within species’ ranges is associated with the like-
lihood that a species: (i) is listed as threatened; (ii) has qualified for 
uplisting to a higher category of extinction risk in recent decades (see 
Methods); and (iii) has a declining population trend (as classified by 
IUCN Red List assessors).
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As expected, we found a strong association between rate of recent 
forest loss and each response variable. The odds of threatened status, 
declining population trends, and uplisting increased by 5.06% (95% 
confidence interval: 1.01–9.27), 11.34% (6.45–16.45), and 8.39% 
(1.53–15.70), respectively, for each 1% increase in recent forest loss for 
forest-exclusive species. This is not surprising, given that estimated or 
inferred rates of habitat loss are used to inform IUCN Red List assess-
ments under criterion A2, particularly for species lacking direct data 
on population trends17. Nevertheless, our results confirm that previous 
categorical estimates of habitat decline (based on a mixture of inference, 
qualitative and quantitative analysis) match with our global, systematic 
analysis of quantitative data on forest loss16.

More importantly, we found strong support for the initial intrusion 
hypothesis for both forest-optional and forest-exclusive species. Species 
were more likely to be threatened, exhibit declining population trends 
and have been uplisted if their ranges contained intact landscapes  
(> 90% forest cover) with high rates of recent forest loss (Fig. 2). Evidence 
for this lies in the strong positive statistical interaction between forest 
loss and cover (that is, forest loss ×  cover, Figs 2a, 3) on all response  
variables for both forest-exclusive and forest-optional species (maximum  
false discovery rate (FDR)-adjusted P =  0.025, minimum z =  2.51,  
Fig. 2a, Supplementary Table 3). For example, at high proportions of 
initial forest cover (90%), the odds of a forest-exclusive species being 
uplisted were 15.78% (95% confidence interval: 6.99–25.30) greater 
for each 1% increase in deforestation. At average proportions of forest 
cover (57%), the equivalent increase in deforestation was much smaller, 
with the odds of a forest-exclusive species being uplisted reduced to 
3.45% (95% confidence interval: − 3.91 to 11.36) (Fig. 3). These results 
were generally similar across vertebrate classes, but amphibians showed 
the strongest and most consistent effects across response variables 
(Extended Data Fig. 2). Predictably, forest loss and its interaction with 
forest cover had little effect on non-forest species (Figs 2, 3).

Historical forest loss also exhibited a strong negative influence on 
vertebrate biodiversity (Fig. 2), which may be evidence of an extinc-
tion debt in which some species are capable of persisting in landscapes 
long after initial forest loss has occurred, but subsequently decline. 
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Figure 1 | Spatial distribution of the six variables used to predict 
species’ IUCN Red List response variables. a, b–d, Forest cover in the 
year 2000 (a), forest loss between 2000–2014 (b), forest gain (2000–2012) 
(c), and human footprint (d). e, The interaction term ‘forest loss ×  cover’ 
tested alternative hypotheses that forest loss exerts the greatest negative 
influence on biodiversity at low versus high initial levels of forest cover. 

High values of this variable (shown in e) correspond to regions of both 
high forest cover and loss. f, Historical forest loss represents long-term 
forest loss in years preceding 2000. Values plotted are averages taken over 
0.4° grid cells. The maps are derived from current forest change maps6  
(a–c, e, f), an intact forest landscapes map32 (f), biomes of the world33 
(f), and human footprint22 (d).
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Figure 2 | Effects of four predictors on the status of 19,432 vertebrate 
species worldwide. a, Positive ‘forest loss ×  cover’ terms indicate that 
the negative effects of forest loss are amplified in landscapes with greater 
initial forest cover. b–d, Forest gain tended to have a positive effect on 
forest optional and exclusive species (b), whereas historical forest loss 
(c) and human footprint (d) tended to have negative effects. ‘Threatened 
status’ refers to IUCN Red List categories of ‘Vulnerable’, ‘Endangered’, 
or ‘Critically Endangered’. ‘Uplisted in threatened status’ means that the 
most recent genuine Red List category change for a species has been in the 
direction of higher endangerment. Forest loss and cover variables were 
included as main effects, but coefficient estimates are not shown here as 
they are not readily interpretable in the presence of the interaction term. 
Error bars represent 95% confidence intervals. Categories for P values 
are listed as ranges (that is, 0 <  P ≤  0.05, 0.05 <  P ≤  0.1, P >  0.1), and 
sample sizes (also given in Supplementary Table 1) for non-forest/forest-
optional/forest-exclusive are 4,218/3,430/4,218, 10,457/8,827/10,457, 
4,757/4,073/4,757 for Threatened status, Declining trend, and Uplisted in 
threatened status, respectively.
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Predictably, increased human footprint has had a generally negative 
influence on the status of vertebrates associated with forest and non- 
forest systems (Fig. 2). We also found recent forest gain decreased the 
likelihood of threatened status (forest-exclusive and forest-optional 
species) and declining population trend (forest-optional species; Fig. 2).  

However, amphibians primarily drove these relationships; bird and 
mammal biodiversity did not show statistically significant responses 
to forest gain (Extended Data Fig. 2), indicating that young secondary  
forest does not appear to be ameliorating biodiversity declines for  
these taxa8.

Overall, the global spatial autologistic regression model performed 
remarkably well (area under the receiver operating characteristic  
curve (AUC) =  0.78; Extended Data Fig. 1), even when we conser-
vatively excluded entire regions one at a time (Africa, Americas, 
Asia, Oceania) and evaluated models on these independent data 
(AUC =  0.74). Furthermore, results remained consistent when we 
statis tically accounted for phylogenetic dependencies, latitude, and time 
since each species was initially described Extended Data Fig. 3. We also 
applied alternative approaches to account for spatial autocorrelation 
and excluded species designated as threatened due to characteristically 
small and declining or fragmented ranges (that is, under IUCN Red List 
criterion B) (Extended Data Figs 3, 6). Results were also robust to degree 
of threat; Critically Endangered, Endangered and Vulnerable species all 
showed similar patterns in response to forest loss (Extended Data Fig. 9).

Strong support for the initial intrusion hypothesis may be surprising, 
given existing theory3,23 and that a considerable number of conserva-
tion programs focus on areas that have already lost substantial forest24. 
However, such highly deforested landscapes may have already passed 
through a substantial local extinction filter, whereby the most sensi-
tive species have been lost25. A recent broad-scale study conducted 
in the Brazilian Amazon revealed that landscapes still exceeding 80% 
forest cover have lost 46–60% of their conservation value5. Our results 
suggest that initial forest loss is a potential indicator of other threats to 
forest biodiversity that are more challenging to measure at large spatial 
extents. Mechanisms for intrusion effects include increased unregulated 
hunting26 (especially near new logging roads27), disease and human  
disturbance, and invasive species28, as well as the direct effects of habitat 
loss for interior forest specialists29. Indeed, many of the species with 
ranges that were characterized by high initial forest cover (before 2000), 
but intensive recent deforestation, tend to be under hunting pressure 
(for example, Sira curassow (Pauxi koepckeae)) or are habitat specialists 
(Mendolong bubble-nest frog (Philautus aurantium), Mentawi flying 
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Figure 3 | Predicted probabilities of species status as a function of 
recent forest loss and total forest cover within a species range. All other 
covariates (forest gain, historical forest loss, and human footprint) were 
statistically held at their average values when estimating probabilities. 
For forest-optional and forest-exclusive species, the effect of forest loss is 
stronger at high levels of initial forest cover; deforestation in intact forests 
has the most negative impact, supporting the initial intrusion hypothesis.

0.
5 

×
 c

ur
re

nt
lo

ss
 r

at
e

C
ur

re
nt

lo
ss

 r
at

e
1.

5 
×

 c
ur

re
nt

lo
ss

 r
at

e

IUCN
category

Ia Ib II III

IV V VI 0 20 40 60

Increase in
threatened
richness 

2030–2045 2045–2075

Figure 4 | Projected increases in the number of threatened species 
under three scenarios of future forest loss. Projections are estimated 
using the global model. Increased threatened richness (blue to red colour 
scale) is relative to the fitted probabilities of a species being threatened. For 
example, a value of 20 would indicate a projected increase of 20 threatened 
species in a 0.2° grid cell. Only locations with projected increases in 
threatened species are shown and only forest-exclusive species were used 
for this projection. Column labels show time spans where the lower limit 

assumes the effects of forest loss on status are entirely due to deforestation 
from 2000–2014; the upper limit assumes effects could be partly a function 
of forest loss in the decades before 2000 (global locations of forest loss are 
temporally autocorrelated; see Methods, section ‘Intermediate-term forest 
change’). IUCN protected areas (categories I–VI) are shown in greyscale 
shading. The maps are derived from the following sources: IUCN Red List 
species range maps18, recent forest change6, intact forest landscapes32, human 
footprint22, world biomes33, and the World Database of Protected Areas34.
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squirrel (Iomys sipora)) (Supplementary Table 4). If specialists’ habitat 
is targeted in the initial phases of deforestation (for example, accessible 
high-economic-value forest (bottomland forest adjacent to rivers)), 
habitat will be lost at much greater rates than indicated by the overall 
rate of forest loss within a species’ range30.

As a further exploration of the habitat threshold hypothesis, we fit 
a model to test whether the strongest negative effects of recent forest 
loss occurred in landscapes with both high and low levels of remain-
ing forest cover (a statistical interaction between forest loss and forest 
cover squared; Methods). We found no evidence for such an effect for 
either threatened status or recent uplisting (Extended Data Figs 4, 5).  
Notably, the odds of a declining population trend showed  
evidence for this dual effect for forest-optional and -exclusive species;  
we speculate that the increased likelihood of a declining trend with 
deforestation in landscapes with low levels of forest cover, but no  
relationship for threatened status, may constitute early signs of an 
extinction debt that remains to be fully paid. Thus, our results do not 
imply deforestation effects are benign in regions with low levels of 
remaining forest cover. Although species exposed to deforestation in 
such landscapes are less likely to be designated as threatened than those 
exposed to similar rates of deforestation in more intact areas, their 
populations will continue to decline with further habitat loss, which 
will in time inevitably lead to increased extinction risk.

The spatially explicit nature of our model enabled quantitative pre-
dictions of global hotspots where biodiversity is at particularly high 
risk given reduced (halving current rates), continued, or accelerated 
(1.5× ) future rates of forest loss (each assumes no future forest loss in 
protected areas with IUCN categories I–VI; Fig. 4). High-risk hot spots 
emerged in southeast Asia (particularly Borneo), the central-western  
Amazon and the Congo Basin where the numbers of threatened  
forest-exclusive species are predicted to increase by 82–134, 34–74, 
and 5–11, respectively, over the next 30 years under current rates of 
deforestation. Together, the number of threatened species for these 
three regions is predicted to increase by 121–219. Currently, only 
17.9% of these areas are formally protected (IUCN classes I–VI; 
Supplementary Table 5) and only 8.9% have strict protection (IUCN 
classes I–III). These results, alongside evidence of ongoing erosion of 
intact forest landscapes31, highlight that areas until recently considered 
to be of “low vulnerability”9 are in fact where anthropogenic distur-
bance is increasingly putting species at most risk of extinction. New 
large-scale efforts to reduce both degradation and loss of intact forest 
landscapes7 are needed to protect against an intensified wave of extinc-
tions in the world’s last wildernesses.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethODS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.
Species data. We obtained data on three classes of terrestrial vertebrates (mam-
mals, amphibians, and birds) from the IUCN Red List17. We defined threatened 
species as those classified as Vulnerable, Endangered, or Critically Endangered on 
the Red List. We also obtained population trends (‘Increasing’, ‘Stable’, ‘Decreasing’, 
or ‘Unknown’) from the Red List. We excluded ‘Data deficient’ and ‘Extinct in the 
wild’ species from our analysis with threatened status as the response variable. 
Similarly, for the decreasing population trend response, we excluded species with 
unknown population trends.

For analyses in which we examined change in Red List category, it is necessary 
to compare time points in which all species in the taxonomic group were assessed, 
and to consider only those Red List category changes between such assessments 
that resulted from genuine improvement or deterioration in status (that is, exclud-
ing changes owing to improved knowledge or revised taxonomy). These genuine 
changes underpin the Red List Index35,36. We considered species to have been 
uplisted if their most recent genuine Red List category change was in the direction  
of increasing endangerment (Least Concern <  Near Threatened <  Vulnerable  
<  Endangered <  Critically Endangered). These data were obtained from Hoffmann 
et al.37, and were updated to match the taxonomy on the 2016 IUCN Red List; the set 
of genuine changes for birds was also updated using data in BirdLife International38. 
The relevant periods of our primary uplisting dataset are 1980–2004 for amphibi-
ans, 1996–2008 for mammals, and 1988–1994, 1994–2000, 2000–2004, 2004–2008, 
2008–2012, and 2012–2016 for birds. Additionally, we used all available genuine 
category change data from 2008–2016 for mammals and 2006–2016 for amphibi-
ans. Although these more recent category change data (approximately 100 category 
changes) are not yet comprehensive (that is, not all species in these taxa have been 
checked for genuine category changes over these times), they cover a wide range of 
species and are likely to be reflective of recent changes in forest cover for these species.  
Genuine category change data are currently unavailable for other time periods.

We classified non-avian species according to habitat usage (forest-exclusive, 
forest-optional, and non-forest) using the IUCN Red List data coding species 
against the IUCN habitats classification scheme (http://www.iucnredlist.org/
technical-documents/classification-schemes/habitats-classification-scheme-ver3). 
We treated species using only forest habitat as forest-exclusive, those using forest 
habitat and at least one other habitat type as forest-optional, and those not using 
forest at all as non-forest. To categorize bird species, we used higher-quality data on 
forest dependency from BirdLife International38, treating species with high forest 
dependency as forest-exclusive, medium and low forest dependency as forest- 
optional, and not normally using forest as non-forest.

The species range maps used in the analysis were derived from the IUCN Red List 
for mammals and amphibians, and from BirdLife International and NatureServe18 
for birds. For each species, we used only range polygons where presence was classi-
fied as ‘Extant’ or ‘Probably extant’. Vertebrates without range maps available were 
omitted from the analyses (108 mammals, 39 amphibians, and 30 birds). Reptiles 
were excluded from the analysis as IUCN reptile data are relatively limited39.

After screening for data availability using the steps above, the dataset consisted  
of 19,432 species (19,615 including data-deficient species), 4,396 (22.6%) of which 
are listed as threatened. The entire dataset represents 58.2% of the terrestrial  
vertebrate species globally (98.9% birds, 84.9% mammals, 63.1% amphibians) 
(based on described species totals from IUCN Red List summary table 1).
Predictor variables. We used six predictor variables in our primary analysis  
(Fig. 1). Here, we describe these variables in detail.

We used the forest change maps (version 1.2) given in Hansen et al.6 for our 
analyses. The forest cover map indicates the percentage forest cover in each 30 m  
pixel in the year 2000. The forest loss and gain maps are both binary and indicate  
whether forest loss or gain occurred in each pixel. Following Hansen et al., we  
considered forest to have been ‘lost’ if a stand-replacing disturbance (that is, complete 
removal of tree cover canopy at the Landsat pixel scale) had occurred between 2000 
and 2014, and ‘gained’ if establishment of tree canopy from a non-forest state had 
occurred between 2000 and 2012. In addition, we included a forest loss ×  forest cover 
interaction term to test the hypothesis that the effects of forest loss are dependent 
upon the total amount of forest within a species’ range. A positive coefficient for such 
a term would indicate that the effect of recent forest loss on our response variables 
was amplified at when initial forest cover was high (support for the initial intrusion 
hypothesis). Conversely, a negative coefficient for this interaction term would indi-
cate that the effect of recent forest loss on our response variables was greatest at low 
forest cover (support for the habitat threshold hypothesis; see main text).

The human footprint map that we used (Global Human Footprint v.2,  
1995–2004) measures the extent of human impacts on the environment and is 
created from nine global data layers covering biome type and biogeographic realm, 

human population density, human land use and infrastructure (that is, built-up 
areas, night-time lights, land use/land cover), and human access (coastlines, roads, 
railroads, navigable rivers)40. Among land cover types, built-up environments 
increase the human influence index the most, followed by agricultural land cover, 
and mixed-use land cover (other types do not contribute to the index)22. Thus, 
loss of forest to these land cover types could cause human footprint to be partially 
confounded with our forest loss variable, potentially causing our analysis to under-
estimate the effects of forest loss. A more recent version of this map (1993–2009) 
was recently released41,42 but the original and updated human footprint maps are 
highly correlated (r =  0.935 at 2° resolution), so our choice of human footprint map 
is unlikely to have influenced the results.

In our analysis, ‘historical forest loss’ is an estimate of long-term patterns in 
forest loss that is not captured by contemporary forest change. To construct this 
variable, we took the following steps. First, we used a random forest regression 
model to develop a historical (or potential) forest cover map. We modelled the 
continuous variable ‘percentage forest cover’ in the year 2000 (from Hansen et al.7) 
as a function of x and y coordinates, 19 bioclimatic variables (derived from monthly 
temperature/precipitation) from the WorldClim database13 along with a categor-
ical variable representing forest biomes33. Importantly, to exclude the effects of 
contemporary anthropogenic disturbance on percentage forest cover we only used 
data from within ‘intact forest landscapes’ (IFLs) in the regression model. An IFL 
is defined as “an unbroken expanse of natural ecosystems within areas of current 
forest extent, without signs of significant human activity, and having an area of at 
least 500 km2”32. We assumed that forest cover in intact forest landscapes (IFLs) is 
representative of the degree of canopy cover that could be historically supported in 
across the globe. We then extrapolated the fitted values of this model to the areas 
for a map of potential or historical forest cover (Extended Data Fig. 10a). Second, 
we subtracted recent forest cover from historical cover to estimate historical loss 
(Extended Data Fig. 10b) to yield a map of historical forest loss (Extended Data  
Fig. 10c). We restricted our modelling to within forest biomes, excluding non-forest 
biomes and the boreal forest/taiga. Although some forest cover may be present out-
side forest biomes (for example, in savannahs), limitations in available IFL data for 
these cover types and the taiga make reconstructing historic forest cover in these 
biomes impractical. Moreover, forest obligate species—our primary focus—seldom 
occur outside forest biomes. Modelling was conducted at 5-km resolution using 
rasters in Behrmann cylindrical equal-area projection. We used ArcGIS 10.1 and  
R for the geospatial analyses43,44. The random forest model was fit using the Rborist 
R package with the default settings45. We acknowledge that the period of time since 
historical deforestation can vary widely across locations globally. Nevertheless, in 
the absence of globally available forest loss data before 2000, this variable is the best 
available test of whether long-term reductions in forest cover within a species range 
affects Red List category and overall direction of population trend.
Statistical analysis. We used a 2-decimal degree equivalent equal-area grid  
(constructed using the Behrmann cylindrical equal-area projection). This resolu-
tion is considered appropriate for macroecological analyses that involve species’ 
range maps46. We rescaled covariates to this resolution by taking their average 
values across each grid cell (ignoring regions over water). We rescaled species’ 
ranges to the grid by treating a species as present in a grid cell if any part of its 
range overlapped that cell. We then averaged covariates across species ranges 
using the averages of their cell values weighted by the proportion of land in 
each grid cell.

We modelled the probability of species being threatened, having a declining 
population trend, or having been uplisted (three separate binary responses) using 
autologistic regression to account for potential spatial autocorrelation47. The 
spatial autocovariate was calculated for each species using a symmetric spatial 
weights matrix as:

∑=
∈

A w yi
j k

ij j
i

where i is the ith species, ki is the set of its neighbours, yj is the response for the jth 
species, and wij =  1 corresponding to the (i, j) entry of the binary spatial weights 
matrix48. Geographic distance was calculated using species’ range centroids. The 
spatial weights matrix and spatial autocovariate were calculated using the spdep 
package for R44,49.

We used the generalized linear model (GLM) function glm in R to fit the logistic 
regression model, including the covariates described above, the spatial autocovariate,  
and taxonomic class (as a fixed effect). We estimated standardized coefficients 
and 95% confidence intervals for all predictor variables (each was standardized  
(z-transformed) before analysis). Our hypothesis tests were conducted across all three 
vertebrate classes with six predictor variables, which risks inflating Type I error rate. 
Sequential Bonferroni-type multiple comparisons are sometimes used to account 
for such error inflation, but are highly conservative50. Therefore, we used a FDR 
procedure (the ‘graphically sharpened method’50) which does not suffer from the 
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same loss of power but corrects for multiple comparisons. FDR-adjusted P values 
were calculated with p.adjust in R44,51.
Projecting future status changes. We used our model for threatened status of for-
est-exclusive species to map the predicted increase in threatened species richness at 
multiple forest loss rates over time. We did this by simulating continued forest loss 
at rates of 50%, 100% and 150% the current rates for the time spans 2030–2045 and 
2045–2070. For example, at the current loss rate the area of forest lost would double 
in 15 years (by 2030). We modified these forest loss projections by setting predicted 
future loss to zero within IUCN category I–VI protected areas using the polygon 
type protected area maps in the World Database of Protected Areas (WDPA)34. 
Assuming that there are no substantial time lags between forest loss and species 
being listed as threatened, the resulting predictions (probabilities of species being 
threatened) correspond to 2030. In the event that intermediate term (approximately 
1950–2000) forest loss is also closely linked to threatened status (that is, there are 
time lags between forest loss and status decisions), we included conservative upper 
time limits corresponding to half the stated forest loss rates. In all cases, predicted 
current probabilities of being threatened (from the fitted model) were subtracted 
from the estimated future probabilities; we then mapped the result by summing 
probabilities for all species in each raster grid cell. As the maps show qualitatively 
similar patterns, they can conservatively be interpreted as showing ‘relative hot 
spots’—an interpretation that is valid even if the true intermediate-term forest rate 
of loss is substantially higher than in our scenario.

To assess overlap between existing protected areas and hot spots (at high risk 
of increases to the Red List), we used the ‘predicted increase in threatened spe-
cies richness’ map for 2030–2045 at the current loss rate. Within each regional 
panel of this map set in Fig. 4, we considered hot spot areas to be those with at 
least one quarter of the maximum predicted increase in threatened richness for 
that region. We estimated the percentage of these areas that is protected using the 
World Database of Protected Areas (WDPA)34. For this analysis, we report both 
strictly protected areas: IUCN categories Ia (Strict Nature Reserve), Ib (Wilderness 
Area), II (National Park), and III (Natural Monument or Feature) and all other 
IUCN categories (IV, Habiat/Species Management Area; V, Protected Landscape; 
VI, Protected area with sustainable use of natural resources). In addition, we only 
consider protected areas with polygon data in the WDPA, which results in a con-
servative estimate of the percentage of high-risk area that is protected.
Assessing model performance. We used the area under the receiver operating 
characteristic curve (AUC) to assess model performance for our primary model 
(predicting threatened status for forest exclusive species). The AUC reflects the true 
versus false positive rates for a binary classifier with continuous output as a function 
of the threshold used to determine which outputs correspond to which categories52.

We calculated AUC both for the ‘All species’ model (with ‘class’ as a fixed effect) 
and separately for each class using models fit to individual classes. We did this 
with and without the spatial autocovariate term. In each case, we also quanti-
fied model performance using fourfold cross-validation by regions of the world 
(Supplementary Table 2). We used a regional grouping (Africa, Americas, Asia, 
Oceania) based on the United Nations Statistics Division classification system53. 
Using entire regions as hold-out test datasets further reduces the positive effects 
of dependency (spatial, taxonomic, and so on) on model performance metrics54. 
The raw and cross-validated AUCs (0.784 without cross-validation, 0.743 with 
cross-validation) for ‘All species’ together (with the autocovariate) indicate that our 
models perform well (Extended Data Fig. 1). For each model, we also calculated  
P values from a Wilcoxon rank-sum test55 to quantify whether the AUCs were 
significantly greater than 0.5 (a baseline at which the model is performing no better 
than random chance). All P values except the one for mammals with cross validation 
and no auto-covariate term were highly significant (< 0.001) (Extended Data Fig. 1).
Alternative statistical methods to account for spatial autocorrelation. We tested 
the residuals of our global autologistic regression model for spatial autocorrelation; 
for all response variables, Moran’s I was < 0.15 across all distance classes, indicating 
that the autocovariate had removed spatial autocorrelation. Further more, to ensure 
that our results were robust to the sort of spatial model applied, we fit other spatial  
logistic regression models (that is, Moran eigenvector filtering, simultaneous  
spatial autoregressive models (SAR), and Bayesian conditional autoregressive models  
(CAR)) to assess sensitivity to the procedure used for modelling or accounting 
for spatial autocorrelation. We also fit a non-spatial generalized linear model for 
reference along with our primary spatial autologistic regression model using the 
50 nearest neighbours of each species (instead of 5). In each case, the models were 
fit using forest-exclusive species with threatened status as the response. We fit 
models for each taxonomic class separately, as not of all of the procedures could 
readily incorporate the hierarchical structure of the data. Our results were robust 
to the spatial autocorrelation modelling method (Extended Data Fig. 6). Details 
on other spatial models applied are given below.

We fit a Moran eigenvector GLM filtering model by adding covariates to the 
generalized linear model that were computed using the ME function in the spdep R 

package49,56. This spatial filtering model involves augmenting the predictor matrix 
with eigenvectors computed from the spatial weights matrix so as to reduce the 
spatial autocorrelation of the residuals (as estimated using the Moran’s I statistic). 
The smallest subset of eigenvectors that causes the permutation-based Moran’s I 
test P value to exceed a threshold α  is chosen for inclusion (we used α  =  0.2, which 
is a common default value).

We fit CAR and SAR models using the binary spatial weights matrix described 
above. The conditional autoregressive model was fit using the CARBayes R  
package57. Markov chain Monte Carlo sampling errors were encountered when 
fitting a few of the CAR models. In such cases, the model results are not available. 
The simultaneous autoregressive model was fit using the splogit function in the 
MCSpatial package58. It is based on an approximation (linearization), which allows 
the model to be fit to large datasets59.
Estimates within taxonomic classes. While the primary results presented in the 
main text (Fig. 2) are for all classes together (with class included as a fixed effect), 
we also fit models using data from each class separately (Extended Data Fig. 2). 
We did this to assess the extent to which our results, particularly for the forest 
loss ×  cover interaction, are consistent between classes.
Accounting for the effects of latitude. We fit models including latitude as a main 
effect (Extended Data Fig. 3a). We did this to test whether our results were robust 
to this potential confounding variable, which is correlated with numerous variables 
that may be linked to endangerment such as net primary productivity (NPP) and 
per capita gross domestic product (GDP). The estimated forest loss ×  cover inter-
action term did not change substantially when accounting for (absolute) latitude 
(Extended Data Fig. 3a).
Quadratic models (loss × cover squared interaction). We fit models with quad-
ratic interaction terms corresponding to forest loss ×  cover2 to test whether the 
models with only the linear forest loss ×  cover terms were adequate for forest  
exclusive and optional species. Support for a quadratic interaction term would  
provide evidence for both the initial intrusion hypothesis and the threshold 
hypothesis; in other words, the effects of forest loss on species status and trends 
are most substantial both at very high and very low initial forest amounts (see main 
text). These quadratic terms were generally non-significant (Extended Data Fig. 4) 
supporting the hypothesis that the effect of forest loss on the odds of species being 
threatened, declining, or uplisted varies linearly with forest cover. However, in the 
overall (all species) models, we found strong evidence that the forest loss ×  cover2 
term was positive when declining trend was the response variable (Extended Data 
Fig. 4). This suggests that the effect of loss on population trends may be most 
negative at both low and high levels of forest cover, and smallest (near zero) at 
intermediate levels of forest cover (Extended Data Fig. 5).
Tropical forest species. As the ecology of tropical forests often responds differently 
to non-tropical forests, we also examined model results for species found exclusively 
in tropical forests (Extended Data Fig. 3b). We did this by restricting the species set 
to those with ranges containing only grid cells that overlap tropical forests. We deter-
mined tropical forest regions using a map of biomes33 and treating the following 
biomes as tropical forest: ‘Tropical & Subtropical Moist Broadleaf Forests’, ‘Tropical 
& Subtropical Dry Broadleaf Forests’, ‘Tropical & Subtropical Coniferous Forests’ 
and ‘Mangroves’. The restriction of our dataset to tropical forest species did not 
substantially alter our primary results, although it did weaken the forest loss ×  cover 
effect on the likelihood of declining population trends (Extended Data Fig. 3b).
Range area. Species’ geographic range area is a key predictor of extinction risk, 
and extent of occurrence and area of occupancy are two parameters used to assess 
species under criterion B of the IUCN Red List. This can pose a circularity issue 
for comparative extinction risk analyses, particularly those that attempt to assess 
the effect of geographic range area relative to the effects of other predictors on 
species endangerment60. A common remedy is to run the analysis on species 
classified as Least Concern and those that are listed as Near Threatened or threat-
ened for reasons not directly linked to small geographic range area (that is, not 
under criterion B)60. We followed this procedure as part of our sensitivity analysis.  
Specifically, we excluded species listed as threatened under criterion B. Such  
species made up 2,529 (approximately 58%) of the 4,396 threatened species in our 
full dataset. The results (Extended Data Fig. 3c) show that our overall conclusions 
are robust to the exclusion of these species.
Forest loss and cover threshold. In our primary analysis, we used the forest loss 
and cover variables directly as given in Hansen et al.6. Forest cover is a continuous 
variable ranging from 0% to 100% cover within each pixel and forest loss is a binary 
variable indicating whether or not tree cover canopy had been completely removed 
between 2000 and 2014. Since the effects of forest loss and cover on endangerment 
(status/trends/uplisting) probably vary depending on the initial amount of forest 
cover, we replicated our analyses, but truncated forest loss and cover at the 75% 
threshold (Extended Data Fig. 3d). That is, we treated cover and loss as zero in 
pixels that had less than 75% initial forest cover. This change did not influence our 
results substantially (Extended Data Fig. 3d).
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Forest loss and gain standardization. The forest loss and gain variables in our 
analysis can be thought of in terms of percentages of species’ ranges since they are 
averages of spatial variables across species’ ranges. An alternative way to compute 
the forest loss and gain variables is as percentages of forest cover within species’ 
ranges. We used these standardized loss and gain variables (that is, loss divided by 
cover and gain divided by cover) as part of our sensitivity analysis (we similarly 
standardized historical loss by dividing by potential cover), and found that their 
use had little effect on our results (Extended Data Fig. 3e). This provides another 
way of quantifying forest loss and gain, which may be particularly appropriate for 
species that have little forest cover within their ranges. This was uncommon in our 
core dataset as we focused on forest-optional and -exclusive species, that tend to 
have high forest cover across their ranges.
Accounting for phylogeny. The models that we fit assume that the dependence 
structure of the observations is purely spatial. However, this may not be valid as 
species that are phylogenetically similar may be more likely to have the same status, 
trend, or uplisting variable values, even after accounting for the covariates in the 
models. To explore this issue of potential phylogenetic dependence and its effect 
on our results, we fit generalized linear mixed models using glmer in the lme4  
R package61, including random effects by taxonomic order (Extended Data  
Fig. 3f). We were unable to fit more complex phylogenetic models that use full trees 
(for example, phylogenetic logistic regression) because detailed phylogenetic data 
are not available for many of the species in our analysis62. However, the addition of 
taxonomic-based random effects did not substantially alter our results, suggesting 
that the effects of phylogenetic dependence are weak after accounting for spatial 
autocorrelation and the other predictors (Extended Data Fig. 3f).
Assessing sensitivity to resolution. We tested the sensitivity of the results to the 
spatial resolution used in our analysis (2 decimal degree equivalent equal-area) by 
re-computing the covariates (averages across species’ ranges) at a finer resolution 
of approximately 5 km. In this analysis, we refined the species’ ranges by clipping 
them using the species’ altitude limits coded on the IUCN Red List, when available 
(6,047 of 19,615 species). We also excluded forest loss, gain, and cover inside of 
known tree plantations using a map of plantations for seven tropical countries63. 
Covariate averages at high resolution were calculated using Google Earth Engine. 
Coefficient estimates show relatively low sensitivity to our choice of resolution, 
clipping ranges by altitudinal limits, and masking out forest variables within known 
plantations (Extended Data Fig. 3g).
Intermediate-term forest change. Our primary forest change variables are from 
2000 to 2014. We also included a derived ‘historical forest cover’ variable to account 
for long-term forest change. However, given that many species were listed in the 
early period of our recent forest-loss data (or even before this), it would be ideal to 
have contemporary forest loss data from before 2000. Unfortunately, no spatially 
contiguous datasets exist for this period. Nevertheless, to extend the time span 
for the more recent forest change variables, we added 1990–2000 forest loss and 
gain estimates to the 2000–2014 estimates, producing estimates of loss and gain 
for the period 1990–201419. This summed dataset covered > 80% of the ranges for 
only 58.7% of the species in our analyses. Using these data, the forest loss ×  cover 
interaction term was weaker. However, consistent with our primary analyses, esti-
mates still tended to be positive for forest-optional and -exclusive species (Extended 
Data Fig. 3h). It is likely that the smaller effect size estimates are related to uncer-
tainty in the 1990–2000 dataset caused by missing data (Extended Data Fig. 7). 
Importantly, we found a high correlation between 1990–2000 and 2000–2014 
forest loss at low levels of missing data, which suggests that locations of interme-
diate-term and recent forest loss are correlated at the scale of species’ ranges (there 
is temporal autocorrelation in forest loss; Extended Data Fig. 7). This correlation 
is further supported by the country-level correlations between 1990–2000 and 
2000–2015 net forest loss (that is, change in percentage cover) obtained using the 
Food and Agriculture Organization’s (FAO) Global Forest Resources Assessment 
country-level data64 (unweighted correlation 0.705, country land-area-weighted 
correlation 0.805; Extended Data Fig. 8). This explains strong effects of forest loss 
during the 2000–2014 period even though some species may not yet have fully 
felt the effects of this most recent loss (or had their status updated accordingly).
Year of discovery. Newly described species are often from remote areas (that is, 
with initial high forest cover) where development is starting to take place (dis-
covery was facilitated by access); such species are highly likely to be classed as 
threatened65. To explore how time since initial species description influenced our 
results, we conducted a sensitivity analysis including ‘year of species description’ as 
a predictor. We gleaned year of description from the taxonomic authority sections 
of Red List fact sheet accounts. For 18 of the species in our analysis, two adjacent 
years were reported (for example, “Highton, 1971 (1972)”). In these cases, we used 
the average of the two years. In addition to a main effect for year, we included 
the three-way forest loss ×  forest cover ×  year interaction. This directly tests the 
hypothesis that the initial intrusion effect (the statistical interaction between forest 
loss and cover) is mediated by the time when a species was initially described, 

with the expectation that most recently described species are more likely to show 
such effects. However, there was little statistical support for this hypothesis; the 
strength of the forest loss ×  forest cover interaction (our primary focus) was largely 
unchanged (Extended Data Fig. 3i).
Threshold for threatened species. It is possible that species in different threat cat-
egories could respond in contrasting ways to forest loss. For instance, we expected 
species listed as Endangered and Critically Endangered to be more likely to support 
the habitat threshold hypothesis; these species only become extremely threatened 
when forest continues to be lost at high rates after most original habitat has been lost. 
Therefore, we tested effects of forest loss, forest amount and their interaction on suc-
cessive levels of IUCN threat categories (Extended Data Fig. 9). We compared model 
results to those obtained when threatened species were taken to be Endangered or 
Critically Endangered species and Critically Endangered species alone. Our overall 
conclusions were consistent across threat categories (Extended Data Fig. 9).
Data availability. Data that support the findings of this study have been deposited 
with figshare at: https://doi.org/10.6084/m9.figshare.4955465.v4.
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Extended Data Figure 1 | Receiver operating characteristic (ROC) 
curves for the models predicting status of forest exclusive species. Class 
was included as a fixed effect (as in our main results) for the ‘All species’ 
group. The other results (by class) are based on models fit to each class 
separately. The left column is based on results where the model was fit to 
the entire dataset. The right column shows ROC curves for predictions 

using a fourfold cross-validation scheme where the probability of species 
being threatened was predicted for each of four regions with the model 
fit using data from all other regions. P values are based on the Mann–
Whitney U statistic and test whether the population AUC is greater than 
0.5 (that is, better than random predictions). Results are presented both 
with (bottom row) and without (top row) the spatial autocovariate.
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Extended Data Figure 2 | Model results for models fit by class (mammals, amphibians, birds) and for all classes together (All). Each row shows 
standardized coefficient estimates and 95% confidence intervals (as error bars) for each single model. All covariates are shown in this figure.
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Extended Data Figure 3 | Sensitivity analysis results. The plotted 
variable is the estimated standardized coefficient for the forest loss ×  cover 
term with 95% confidence interval (as error bars). Each column 
corresponds to a different sensitivity analysis (other covariates are not 
shown). a–i, In general, we found that our primary results were robust to 
the inclusion of absolute latitude as a predictor variable (a), the restriction 
of the dataset to tropical species only (b), the exclusion of species listed as 
threatened based on small geographic range (c), using a 75% pixel-scale 
threshold for the forest loss and forest cover variables (d), standardizing 
forest loss and gain by forest cover (that is, dividing forest loss and gain 
by forest cover so that these variables can be interpreted as approximate 

percentages of species’ forested range) (e), accounting for potential 
phylogenetic dependence using generalized linear mixed models with 
random intercepts by taxonomic order (and by class for the ‘all species’ 
model) (f), using high-resolution species’ range maps and covariate 
maps (approximately 5 km), clipping species ranges based on altitudinal 
limits, and setting forest loss and cover to zero in regions of known tree 
plantations (g), including forest loss and gain from 1990–2000 by adding 
1990–2000 and 2000–2014 forest change variables (h), and the inclusion 
of year of initial species description as a main effect and in a three-way 
interaction term with forest loss ×  cover (i).
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Extended Data Figure 4 | Estimated standardized coefficients for 
each model term (with 95% confidence intervals as error bars) when 
a quadratic forest loss × cover2 interaction (forest loss × cover2) 
is included in the model. This allows for the effect of loss to vary 
quadratically with cover. A significant and positive forest loss ×  cover2 

interaction term would suggest that the (negative) effects of forest loss 
are greatest in areas with both high and low proportions of forest cover. 
However, this term was non-significant for most taxa and response 
variables, indicating that the linear model for the interaction is more 
parsimonious.
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Extended Data Figure 5 | The effect of forest loss (for 2% additional 
loss) in relation to total forest cover using quadratic models. These 
models allow the effect of forest loss to vary nonlinearly as a function 
of forest cover, allowing us to test the hypothesis that forest loss is 
detrimental to species at both high and low levels of forest cover. However, 
the quadratic model reveals very similar results to the linear model. 
The exception is when ‘declining trend’ is used as the response; species’ 
populations were more likely to be in decline when forest amount is very 
low (the habitat threshold hypothesis), and upon initial intrusion into 

intact forests (the initial intrusion hypothesis). For statistical significance 
of the quadratic models, see confidence intervals in Extended Data 
Fig. 4, far right panel. For context, the histograms (grey bars) show the 
(normalized to maximum 100%) distributions of forest cover across 
species. For example, if one bar in a panel is twice as high as another, then 
twice as many species have average forest cover of this percentage in their 
ranges. The black lines show the cumulative percentages of species with 
at most x per cent forest cover. For example, approximately half of forest-
optional species have 50% forest cover or less.
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Extended Data Figure 6 | Results of multiple spatial models (estimates 
and 95% confidence intervals as error bars) for forest exclusive species 
when status (that is, whether or not a species is threatened) is used as 
the response. Coefficients across multiple models that account for spatial 
autocorrelation were very similar. ‘Method’ indicates the procedure  
(if any) used to account for spatial autocorrelation: non-spatial ordinary 

GLM (non_spatial), autologistic model with spatial autocovariate (AL_b), 
autologistic model using 50 nearest neighbours in the spatial weights 
matrix (AL_b_50), Moran eigenvector filtering (filtering), spatial 
autoregressive model (SAR_approx), or Bayesian condition autoregressive 
model (CAR_Bayes). Details on each method are given in the sensitivity 
analyses section of the Methods.
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Extended Data Figure 7 | Relationship between forest loss 1990–2000 
(from ref. 34) and 2000–2014 (from ref. 7). Overall, rates of forest loss 
are temporally autocorrelated; species ranges with high forest loss in 
the 1990s also show high forest loss in 2000s. However, this relationship 
is strongly affected by data availability; approximately 12.1% of forest 
loss data are missing across the globe and as we expected, the more data 
missing from a species range, the weaker the relationship between 1990s 
and 2000s rates of forest loss. The plots show correlations (in red; top right 
of each panel) between forest loss across the two time periods for various 

levels of missing data. Each point corresponds to a single species and the x 
and y axis values indicate average values of each variable across its range. 
Panel titles show the proportion of missing 1990–2000 forest loss data in 
species ranges. For example, the top left panel contains results for species 
with between 0% and 4% of their ranges missing 1990 forest data (owing 
to clouds, lack of satellite coverage, and so on). The correlation between 
1990–2000 and 2000–2014 forest loss is highest for species with the least 
missing data.
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Extended Data Figure 8 | Country-level forest net loss (that is, change 
in percentage forest cover) for the 1990–2000 and 2000–2015 periods 
according to the Food and Agriculture Organization’s (FAO) Global 
Forest Resources Assessment. Based on these data, the correlation between 

1990–2000 and 2000–2015 forest loss is 0.705. Weighting by country area 
increases the correlation to 0.805. The relatively high correlation suggests 
that the spatially explicit recent (2000–2014) forest loss data that we used is 
closely related to less recent (1990–2000) forest loss.
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Extended Data Figure 9 | Sensitivity of our results to alternative 
categories of threat. In the main text we considered a species to be 
‘threatened’ if it fell into the IUCN Red List category Vulnerable, 
Endangered or Critically Endangered. We conducted further analysis 
considering as threatened only species that are Endangered and Critically 

Endangered, and again for only species that are Critically Endangered. 
Dots show estimated standardized coefficients for each model term (with 
95% confidence intervals as error bars) for all main effects and the forest 
loss ×  cover interaction term. Our overall conclusions were consistent 
across these different definitions of threat.
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Extended Data Figure 10 | Maps showing the methods used to quantify 
historical forest loss. First, we used random forests (a machine-learning 
method) to estimate potential forest cover globally (within forest 
biomes33). a–c, This model was fit using current forest cover within intact 

forest landscapes36 and bioclimatic and other predictor variables66 (a; see 
Methods). We then subtracted current forest cover (b; Hansen et al.6) from 
this map to obtain estimated historical forest loss (c). The map of land is 
taken from http://thematicmapping.org/downloads/world_borders.php.
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