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Supplementary Information 1 

 2 

Supplementary Methods 3 

 4 

In the following subsections, we provide additional methodological details related to our 5 

analyses. 6 

 7 

IUCN protected area management categories 8 

 9 

Protected areas have been categorized in a number of ways. For convenience and to avoid 10 

confusion, here we provide the IUCN‟s definitions used in the World Database on Protected 11 

Areas. 12 

 13 

The (management) categories are given in Dudley
1
 as: 14 

 15 

Ia Strict nature reserve: Strictly protected for biodiversity and also possibly geological/ 16 

geomorphological features, where human visitation, use and impacts are controlled and limited to 17 

ensure protection of the conservation values 18 

 19 

Ib Wilderness area: Usually large unmodified or slightly modified areas, retaining their natural character 20 

and influence, without permanent or significant human habitation, protected and managed to preserve 21 

their natural condition 22 

 23 

II National park: Large natural or near-natural areas protecting large-scale ecological processes with 24 

characteristic species and ecosystems, which also have environmentally and culturally compatible 25 

spiritual, scientific, educational, recreational and visitor opportunities 26 

 27 

III Natural monument or feature: Areas set aside to protect a specific natural monument, which can be 28 

a landform, sea mount, marine cavern, geological feature such as a cave, or a living feature such as an 29 

ancient grove 30 

 31 

IV Habitat/species management area: Areas to protect particular species or habitats, where 32 

management reflects this priority. Many will need regular, active interventions to meet the needs of 33 

particular species or habitats, but this is not a requirement of the category 34 

 35 

V Protected landscape or seascape: Where the interaction of people and nature over time has 36 

produced a distinct character with significant ecological, biological, cultural and scenic value: and where 37 

safeguarding the integrity of this interaction is vital to protecting and sustaining the area and its 38 

associated nature conservation and other values 39 

 40 

VI Protected areas with sustainable use of natural resources: Areas which conserve ecosystems, 41 

together with associated cultural values and traditional natural resource management systems. 42 

Generally large, mainly in a natural condition, with a proportion under sustainable natural resource 43 

management and where low-level non-industrial natural resource use compatible with nature 44 

conservation is seen as one of the main aims 45 

 46 
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When presenting our results by category, we generally omit the Unknown category since 47 

unknown category PAs could be either Strict or Nonstrict, which complicates direct 48 

comparisons. 49 

 50 

Forest raster processing and protected area filtering 51 

 52 

We used the following layers from version 1.6 of Hansen et al.
2
: tree cover in the year 2000 53 

(percentage of each pixel); forest loss between 2001 and 2018 (binary raster) forest gain between 54 

2000 and 2012 (also binary); and primary year associated with forest loss event. Tree cover is the 55 

extent of canopy closure for vegetation with height greater than 5 m, forest loss is defined as a 56 

change from a forest to non-forest state, and forest gain is defined as the inverse of loss
2
. Forest 57 

loss and gain have different timespans because the annual forest loss data continue to be updated. 58 

To simplify the analysis by reducing computational requirements, we re-projected each raster to 59 

1-km resolution in Behrmann Equal Area cylindrical projection using nearest neighbor 60 

resampling. Since the actual amount of forest loss in a pixel depends on the initial forest cover, 61 

we multiplied forest loss by tree cover, so that our final forest loss map ranges from 0 (no loss) to 62 

100 (loss within a pixel that had 100% forest cover). 63 

 64 

We excluded PAs from our primary analysis that: [1] had point (centroid) information only, [2] 65 

were exclusively marine, [3] were established after 2000 since the forest loss data range from 66 

2001 to 2018, [4] had area less than 1 km
2
 since forest change in small PAs can be hard to 67 

estimate accurately, [5] were entirely outside of the forest change maps‟ common extent, [6] had 68 

no land with forest change data within their boundaries, [7] were entirely outside of forest 69 

biome(s), [8] had less than 30% forest cover across their entire extents, or [9] could not be 70 

matched with appropriate control areas (see next section). To determine the extent of forest 71 

biomes, we used a terrestrial map of biomes
3
. We considered the following biomes to have been 72 

historically forested: Tropical & Subtropical Moist Broadleaf Forests, Tropical & Subtropical 73 

Dry Broadleaf Forests, Tropical & Subtropical Coniferous Forests, Temperate Broadleaf & 74 

Mixed Forests, Temperate Conifer Forests, Boreal Forests/Taiga, and Mangroves. 75 

 76 

When summarizing results for lower and higher GDP per capita regions, we determined the 77 

groupings using the United Nations M49 standard
4
. These groups were originally defined as 78 

developing and developed countries respectively. However, they generally align with GDP per 79 

capita, so we opted to use the more neutral terms: lower and higher GDP (per capita). 80 

 81 

Protected area matching 82 

 83 

To match protected areas with unprotected areas that have similar characteristics, we used a 84 

version of 1-k coarsened exact matching (CEM)
5
, with the following matching covariates 85 

(inspired by Nelson & Chomitz
6
): 86 

 87 

1. Elevation (U.S. Geological Survey‟s global 30 arc-second digital elevation model) 88 

2. Slope (Calculated from elevation using the „terrain‟ function in the „raster‟ R package) 89 

3. Tree cover
2
 90 

4. Travel time (by land) to nearest densely-populated area
7
 91 
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5. Population density
8
 smoothed using 20-km circular mean filter (i.e., average population 92 

density within 20 km) 93 

6. Country 94 

7. Ecoregion
3
 95 

8. Primary driver of forest cover loss
9
 (Commodity Driven Deforestation, Shifting 96 

Agriculture, Forestry, Wildfire, Urbanization, Zero or Minor Loss) 97 

These covariates include geographic, environmental, and anthropogenic variables that may 98 

related to deforestation rates. By pairing PAs with unprotected sites having similar values of 99 

these covariates, we can better estimate the effects of protection on deforestation rates. 100 

 101 

We derived our dataset used for matching by resampling these covariates to 1-km resolution. We 102 

retained all pixels with at least 30% tree cover located in a forest-type biome. We then 103 

partitioned the dataset into treatment (inside PA) and control (outside PA) datasets. We removed 104 

all pixels from the control dataset that were within 10-km of a PA to avoid bias due to local scale 105 

leakage
10

. We averaged values within protected areas to obtain one observation per protected 106 

area. To quantify the extent to which treatment (PA) and control (other pixel) datasets differed 107 

with respect to the matching covariates, we first discretized each continuous variables using 10 108 

uniformly spaced breakpoints and then calculated the global L1 imbalance measure
11

. 109 

 110 

For the 1-k matching of PAs with control areas, we coarsened each continuous matching 111 

covariate by dividing it into five roughly equal-sized groups using the 0%, 20%, …, 100% 112 

quantiles as breakpoints. For each PA, the matched control pixels were then taken to be those 113 

with the same covariate values (after coarsening). We removed unmatched PAs, i.e., those for 114 

which no control pixels shared identical (coarsened) covariates.  As a sensitivity analysis, we 115 

also considered matching based on 0%, 10%, …, 100% quantile breakpoints. This resulted in 10 116 

classes per continuous variable, except for travel time where the 0% and 10% quantiles were 117 

both zero (so we omitted the first class). 118 

 119 

Deforestation rates 120 

 121 

To estimate the annual deforestation rate over an area (e.g., PA, control area, or country), we 122 

used the FAO formula as given in Puyravaud
12

: 123 

 124 

  (
  

  
)

 
     

    

 125 

where   is the initial forest cover,    is the final forest cover,    is the initial time, and    is the 126 

final time. We used this formula (with         and        ) rather than the one based on 127 

continuous compounding because that rate is not defined when 100% forest loss occurs, which 128 

can is occasionally the case for small areas
12

. For   , we used the sum of tree cover in 2000 129 

across the area, and for   , we used    minus the sum of tree cover across pixels with tree cover 130 

loss. In our results, we refer to   , because our focus is on deforestation rates. We generally 131 

report differences between percentage deforestation rates in additive, rather than multiplicative, 132 



4 

 

terms. For example, an increase from 1%/year to 1.1%/year would be described as an increase of 133 

0.1%/year rather than an increase of 10%. 134 

 135 

In addition to considering deforestation rates in and around PAs, we assessed the change in the 136 

deforestation rate associated with PA establishment for PAs established between 2002 and 2017. 137 

We used this time range because it allows for the spatial estimation of deforestation rates before 138 

and after PA establishment since the forest loss maps span 2001-2018. For each of these PAs and 139 

its associated control area, we computed the annual deforestation rate (as described above) 140 

before and after the PA was established. We used these data to compute change in deforestation 141 

rate (after – before) in each PA and in its associated control area. 142 

 143 

Net forest loss 144 

 145 

Due to differences between the forest loss and gain variables, we used a different approach to 146 

calculate net forest loss. Specifically, we defined net forest loss as (loss/18 – gain/13)/cover. 147 

Because the change in forest cover associated with forest gain is not readily estimable, we used 148 

forest loss (binary) rather than the product of forest loss and cover in this calculation. In order to 149 

put loss and gain on the same scale, we divided 2001-2018 loss by 18 and 2000-2012 gain by 13. 150 

 151 

The primary analysis did not include forest gain since this variable can be difficult to estimate 152 

using remote sensing, the change in forest cover associated with gain is not known, and forest 153 

gain was not designed to be directly comparable to forest loss
2,13

. 154 

 155 

Species ranges – mapping and modeling 156 

 157 

We derived species richness variables from IUCN Red List species range maps
14

. We used only 158 

data for terrestrial vertebrates (classes Mammalia, Amphibia, Aves, and Reptilia) that were 159 

coded in the Red List as using forest habitat exclusively. We defined threatened species as those 160 

with endangerment category VU (Vulnerable), EN (Endangered), or CR (Critically Endangered). 161 

We rasterized each species‟ range map at 1-km resolution, with only polygons where the species 162 

was coded as Native and either Extant or Probably Extant retained. When data were available, 163 

we removed areas in the resulting rasterized range that were outside of the species‟ altitude limits 164 

coded in the Red List. For this step, we used the U.S. Geological Survey‟s Global 30 Arc-Second 165 

Elevation map (re-projected to 1-km). We added the resulting range maps (for non-threatened 166 

and threatened species separately) together to form the species richness maps. We computed the 167 

averages of threatened and non-threatened forest species richness to use as predictor variables in 168 

our models. 169 

 170 

Country analysis data processing 171 

 172 

Part of this analysis involved calculating the averages of several variables at the scale of 173 

countries. Details are given in the following subsections. 174 

 175 

Species richness 176 

 177 
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We calculated the number of terrestrial forest obligate vertebrate species (mammals, amphibians, 178 

reptiles, and birds) present within each country using the country information in the IUCN Red 179 

List species fact sheets
14

. Within each country, we only considered species that the IUCN Red 180 

List categorized as Native and Present. Although threatened species may stand to benefit the 181 

most from PAs, we included non-threatened species here because adequate protection is 182 

important to ensure that they do not become threatened in the future. 183 

 184 

Forest carbon 185 

 186 

To estimate forest carbon by country, we used the Oak Ridge National Laboratory 1 degree 187 

resolution global forest area, carbon stocks, and biomass map set
15

. We used the map of 188 

aboveground forest tree biomass for 2000, which has units of tonnes carbon per 1-degree grid 189 

cell. We converted this map to tonnes carbon per km
2
, resampled to 1-km resolution and added 190 

up the grid cell values within each country. 191 

 192 

Forested area protected 193 

 194 

To determine the percentage of forested land within each country that is protected, we used a 195 

30% tree cover threshold (in 2000) for forest. This parallels our selection of forested PAs based 196 

on those that are have at least 30% tree cover in one of their associated 1-km pixels. For each 197 

country, we calculated the percentage of forested land that falls with a PA of any category. 198 

 199 

Subsetting 200 

 201 

Because the primary focus of our country-level analysis was on protected areas, biodiversity, and 202 

forest change, we restricted our countries dataset to only those with at least 15 PAs included in 203 

our analysis, at least 5 forest obligate vertebrates, and at least 10,000 km
2
 forest. This prevents 204 

the results from being dominated by, for example, countries with relatively little forested area. 205 

 206 

Model fitting 207 

 208 

We modeled deforestation rates in PAs using spatially and non-spatially varying coefficient 209 

(SNVC) models fit with the “besf_vc” function in the “spmoran” R package with the default 210 

exponential covariance model
16–18

. This modeling approach tests whether spatial variations occur 211 

for each coefficient, and is robust to multicollinearity
18

. The effects of each predictor variable are 212 

classified as either spatially varying or not spatially varying based on minimizing AIC or BIC. 213 

For our analysis we used BIC minimization. For each non-spatially varying coefficient, a single 214 

estimate, standard error, and p-value are obtained. For the spatially varying coefficients, 215 

estimates, standard errors, and p-values all vary spatially and can be obtained for any location. In 216 

the SVNC framework, spatial dependence is modeled using Moran eigenvectors, which are the 217 

eigenvectors of a particular spatial proximity matrix
16

. The “besf_vc” function that we used is 218 

based on a memory-free implementation of the SVNC model, and is suitable for large datasets. 219 

Because spatial dependence is explicitly modeled with this approach, residual autocorrelation 220 

does not indicate a violation of model assumptions – a potential concern with some spatial 221 

matching methods
19

. 222 

 223 
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For coefficients that were found to vary spatially, we obtained point estimates, standard errors, 224 

and false discovery rate (FDR) adjusted p-values
20

 at the PA centroid locations. For our primary 225 

PA deforestation model, we used the following covariates (all linear terms, no interactions): 226 

 227 

1. Deforestation rate in the associated control area 228 

2. Population density 229 

3. Travel time (by land) to nearest densely-populated area 230 

4. PA age (years since establishment) 231 

5. GDP/capita of the country in which the PA is located 232 

6. Strict (IUCN category I-IV) versus nonstrict (category V-VI) protection 233 

7. PA area (in square kilometers) 234 

Because the distributions of PA and control deforestation rates had a few extreme outliers, we 235 

             transformed these variables, to prevent them from dominating the results. 236 

Similarly, we log transformed GDP/capita, and PA area, and we           transformed 237 

population density and travel time. 238 

 239 

As a secondary analysis that was exploratory in nature, we fit two additional models: one with 240 

control area deforestation and threatened forest vertebrate species richness as predictors and the 241 

other with control area deforestation and non-threatened forest vertebrate species richness as 242 

predictors. 243 

 244 

Software 245 

 246 

We carried out the GIS analysis using Google Earth Engine
21

 to download most datasets, R
22

 and 247 

Python with GDAL for general raster processing, Julia
23

 for coarsened exact matching, and R 248 

(with „ggplot2‟) for statistical modeling and data visualization. 249 
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Supplementary Discussion 250 

 251 

Limitations and future work 252 

 253 

The combination of a very large PA dataset and high resolution remotely sensed forest change 254 

maps allowed us to explore factors associated with deforestation in and around the world‟s 255 

protected areas in search of overall relationships. The price of this generality is that it precluded 256 

detailed investigation into each PA‟s unique circumstances. For example, our analysis generally 257 

treated forest loss as the same everywhere, but different types of deforestation (e.g., natural fires, 258 

slash-and-burn agriculture) may have different ecological consequences. This limitation should 259 

be kept in mind, especially when considering comparisons between very different regions. 260 

Additionally, while remotely sensed forest fire data are available, distinguishing between natural 261 

and anthropogenic fires can be challenging. This distinction is important, however, because 262 

natural fires in PAs do not necessarily indicate ineffective management. We attempted to 263 

mitigate this issue by accounting for control area deforestation rates, which may be similarly 264 

affected by fire, as a predictor in our models and by using “primary driver of forest loss” as a 265 

matching covariate. This does not, however, completely address the issue of geographic variation 266 

given that, for example, different types of tree plantations may be common in different regions. 267 

 268 

In our analysis, we assessed PA effectiveness both in terms of spatial and temporal comparisons. 269 

However, the timespans of these analyses were constrained by the availability of forest change 270 

data. Specifically, the spatial comparison comprised PAs established in 2000 or earlier, while the 271 

temporal comparison used those established between 2002 and 2017. These analyses are not 272 

directly comparable since they reflect different time periods.  273 

 274 

We treated forest habitat-using vertebrates as interchangeable and focused solely on total and 275 

threatened species richness. In reality, the composition of species within each protected area, 276 

their levels of endemicity, and the status of individual subspecies and populations occurring in 277 

PAs have major conservation significance. The lack of detailed biodiversity data within the more 278 

than 18,000 PAs in our analysis made it impractical to address these subtler issues. On a related 279 

note, we assumed that species geographic range maps (masked according to altitude limits) are 280 

reasonably accurate. In summary, our approach to defining the effectiveness of forested 281 

protected areas in terms of their deforestation rates relative to control areas represents one of 282 

many ways to define “effectiveness,” and other, methods tied more closely to species 283 

populations may be more appropriate when data are available. This is important because forest 284 

degradation (e.g., due to selective logging) may have major impacts on ecological communities, 285 

but often cannot be readily detected using global remotely-sensed forest change maps. 286 

 287 

Current remotely sensed global-scale forest change data do not distinguish between different 288 

forest types. At smaller scales, airborne laser-guided imaging spectroscopy has been used to map 289 

forest canopy traits include leaf mass per unit area and solar insolation
24

. Such maps could be 290 

used to obtain a more complete picture of forest change in PAs. They could also be used to link 291 

forest change with its effects on forest obligate species through species distribution models. 292 

When considering the effects of deforestation in PAs on species, it may help to incorporate 293 

information on nearby habitat quality and the spatial relationships among PAs. Although our 294 

analysis treated each PA separately, many are close to each other and networks of PAs can have 295 
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beneficial effects on species by improving connectivity between populations and creating 296 

opportunities for successful dispersal
25

. Another possibility for future work is to consider the 297 

various indices we developed jointly in the framework of multi-objective optimization
26

. 298 

 299 

Lastly, it is important to note that most countries created their own PA categorization systems 300 

before the IUCN standard was established and that national designations may be more predictive 301 

of PA policy and outcomes given possible mismatches between country-specific and IUCN 302 

management categories, which are not always interpreted consistently
27,28

. This apparent 303 

inconsistency may be partly explained by IUCN categories being defined primarily in terms of 304 

management objectives rather than quantifiable targets related to biodiversity and habitat 305 

availability
27,29

. Our analysis suggests a criterion (deforestation in PAs relative to matched 306 

control areas) that could be refined to form one of a set of quantitative metrics on PA 307 

effectiveness. Remotely sensed global datasets coupled with careful ground-truthing and local 308 

assessments have the potential to produce spatially consistent estimates of PA deforestation 309 

rates. Compared to a „management objectives‟ framework, such estimates can more effectively 310 

differentiate between current and desired PA effectiveness. 311 

 312 
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Supplementary Table 
 
Supplementary Table 1. Country indices that scale species richness, deforestation rate, and 
forest carbon by area protected adjusted to account for PA effectiveness in limiting 
deforestation. The columns are Country, Species (number of terrestrial forest obligate 
vertebrates), Prot. (proportion of forested area protected), Score (total forest loss in matched 
control areas divided by toal forest loss within PAs), Prot. × Score (adjusted level of protection: 
proportion protected times score), Loss (annual deforestation rate as a percentage of forest cover 
in 2000), Carbon (above ground forest biomass in units of gt Carbon), Ispecies [species threat 
index: Species/(Prot. × Score)], Iloss [forest loss threat index: Loss/(Prot. × Score)], Icarbon [forest 
carbon threat index: log10(carbon)/(Prot. × Score)]. Only countries with at least 10,000 km2 forest, 
15 protected areas included in our analysis, and 5 forest obligate vertebrates were considered. 
Country Species Prot. Score Prot. × Score Loss Carbon Ispecies Iloss Icarbon 

New Zealand 11 0.31 7.53 2.36 0.01 0.62 4.66 0.00 3.73 
Bulgaria 9 0.41 4.25 1.72 0.00 0.38 5.23 0.00 4.98 
Germany 11 0.37 3.27 1.22 0.00 2.50 9.03 0.00 7.72 
Spain 9 0.28 4.32 1.22 0.01 0.80 7.40 0.01 7.32 
South Africa 20 0.15 8.10 1.21 0.01 0.46 16.52 0.01 7.16 
Latvia 11 0.18 3.87 0.70 0.02 0.41 15.71 0.03 12.30 
Costa Rica 346 0.24 2.86 0.69 0.00 0.11 503.76 0.01 11.70 
Panama 429 0.27 2.45 0.66 0.00 0.30 646.90 0.01 12.77 
Thailand 335 0.18 3.60 0.65 0.01 0.85 516.61 0.01 13.77 
Czechia 10 0.22 2.87 0.64 0.01 0.56 15.65 0.01 13.69 
Guatemala 268 0.31 1.87 0.58 0.02 0.42 459.59 0.03 14.80 
Lithuania 10 0.17 3.37 0.57 0.01 0.36 17.46 0.02 14.94 
Romania 9 0.23 2.39 0.55 0.00 1.00 16.43 0.01 16.43 
Tanzania 172 0.38 1.41 0.54 0.00 1.47 319.32 0.01 17.02 
Poland 9 0.40 1.27 0.50 0.01 1.54 17.84 0.02 18.21 
Hungary 6 0.23 1.91 0.43 0.01 0.30 13.96 0.02 19.71 
Zambia 28 0.39 1.09 0.42 0.00 2.13 66.14 0.01 22.04 
Honduras 267 0.23 1.76 0.41 0.01 0.33 656.41 0.03 20.95 
Laos 209 0.17 2.30 0.38 0.01 0.75 548.72 0.04 23.31 
Brazil 1000 0.19 2.00 0.37 0.01 47.68 2702.24 0.02 28.86 
Australia 192 0.20 1.88 0.37 0.01 6.55 521.09 0.02 26.64 
Sweden 11 0.14 2.54 0.36 0.01 1.96 30.47 0.04 25.74 
Mexico 547 0.15 2.48 0.36 0.01 3.55 1515.71 0.01 26.46 
Kenya 83 0.16 2.30 0.36 0.00 0.36 230.71 0.01 23.80 
Austria 9 0.28 1.17 0.33 0.00 0.84 27.20 0.02 26.97 
Venezuela 616 0.41 0.80 0.33 0.00 4.36 1882.94 0.01 29.47 
Colombia 1082 0.14 2.25 0.32 0.00 3.83 3362.45 0.01 29.78 
Nicaragua 211 0.37 0.87 0.32 0.02 0.29 660.32 0.05 26.46 
Cambodia 117 0.26 1.22 0.31 0.02 0.56 372.42 0.06 27.83 
Ecuador 904 0.22 1.44 0.31 0.00 0.89 2892.23 0.01 28.63 
United Kingdom 5 0.29 0.96 0.27 0.01 0.20 18.30 0.03 30.40 
Finland 12 0.13 1.99 0.26 0.02 1.24 45.87 0.06 34.76 
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Vietnam 353 0.15 1.80 0.26 0.01 0.67 1351.54 0.05 33.79 
Côte d'Ivoire 104 0.22 1.16 0.26 0.01 1.59 403.63 0.05 35.71 
Guinea 83 0.22 1.13 0.25 0.01 0.41 326.13 0.04 33.85 
Japan 48 0.18 1.36 0.25 0.00 1.63 191.70 0.01 36.79 
Ghana 87 0.14 1.71 0.24 0.01 0.30 359.81 0.04 35.06 
Madagascar 431 0.05 4.26 0.23 0.02 0.72 1875.64 0.07 38.55 
Philippines 317 0.15 1.45 0.22 0.00 0.41 1428.95 0.02 38.81 
Argentina 201 0.10 2.14 0.22 0.01 1.59 927.69 0.05 42.47 
United States of America 151 0.13 1.41 0.18 0.01 26.31 831.89 0.06 57.41 
Italy 9 0.22 0.83 0.18 0.00 0.73 50.00 0.01 49.24 
Canada 56 0.11 1.62 0.18 0.01 19.96 317.21 0.04 58.35 
Peru 1008 0.19 0.91 0.17 0.00 7.04 5986.51 0.02 58.49 
South Korea 17 0.17 0.92 0.16 0.00 0.33 108.30 0.02 54.29 
Indonesia 1000 0.12 1.20 0.14 0.01 4.23 6913.02 0.08 66.55 
Malaysia 499 0.06 2.20 0.14 0.02 1.26 3610.38 0.16 65.84 
Uganda 128 0.15 0.87 0.13 0.01 0.25 989.04 0.04 64.88 
India 323 0.05 2.60 0.12 0.00 3.03 2616.69 0.02 76.81 
Sri Lanka 59 0.28 0.41 0.12 0.00 0.06 512.58 0.02 67.57 
Dem. Rep. Congo 228 0.13 0.81 0.11 0.01 19.10 2142.35 0.06 96.60 
Papua New Guinea 497 0.04 2.64 0.10 0.00 0.94 4976.09 0.02 89.83 
Russia 34 0.09 1.05 0.10 0.01 52.89 344.53 0.06 108.66 
Myanmar 276 0.06 1.53 0.10 0.01 1.27 2838.47 0.06 93.62 
Nepal 104 0.23 0.43 0.10 0.00 0.25 1074.47 0.00 86.74 
Serbia 9 0.08 1.08 0.09 0.00 0.22 100.72 0.01 93.44 
Chile 19 0.23 0.34 0.08 0.01 1.16 244.99 0.10 116.87 
Iran 8 0.08 0.89 0.07 0.00 0.46 112.01 0.00 121.22 
Nigeria 98 0.13 0.54 0.07 0.00 0.76 1418.35 0.06 128.53 
Switzerland 10 0.10 0.58 0.06 0.00 0.30 163.89 0.02 138.95 
Ukraine 9 0.03 1.82 0.06 0.01 1.50 149.74 0.12 152.65 
Sierra Leone 72 0.06 0.71 0.04 0.02 0.13 1806.42 0.60 203.95 
China 338 0.02 1.80 0.03 0.00 10.16 10742.46 0.14 318.04 
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