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Current species extinction rates are ~1,000 times higher than 
pre-human background rates, suggesting that we are in the 
midst of a sixth mass extinction event1. Diverse efforts to 

conserve biodiversity include captive breeding programmes, legal 
protections for individual species, restrictions on wildlife trade, 
control of invasive species and the establishment of protected areas2 
(PAs). PAs are a cornerstone of many conservation programmes 
and can be effective in reducing overexploitation, habitat loss and 
many other threats within their boundaries3. The percentage of 
Earth’s terrestrial area that is protected has increased substantially 
over the past decade and is now approaching the Aichi Convention 
on Biological Diversity’s 2020 Target of 17%4,5. However, PA cov-
erage alone is an inadequate conservation metric because nearly 
one-third of protected land is under intense human pressure6 and 
‘paper parks’ prove ineffective5. Moreover, prioritizing area pro-
tected over other metrics can indirectly lead to declines in effec-
tiveness5. Assessing the effectiveness of PAs is challenging because 
biodiversity responses to protection are often difficult to measure7.

One of the most basic functions of PAs is to provide habitat for 
species. Most of Earth’s terrestrial species rely on forest habitat8. 
Consequently, we focus here on deforestation as a form of habi-
tat loss, although other types of habitat loss can be important in 
non-forest ecosystems. Deforestation increases the extinction risk of 
forest-associated species9 and reduces the amount of carbon seques-
tered into organic biomass10. Thus, the extent to which PAs limit 
deforestation is often a key component of their effectiveness, both 
in terms of species conservation and carbon storage services. Unlike 
species populations7,11,12, forest cover and change can be consistently 
mapped globally at high resolution using remote sensing, which 
makes such data well-suited to global analyses13. Previous research 
has demonstrated that PAs conserve forest habitat7, that mixed-use 
and indigenous PAs can be more effective than strictly protected 
PAs14,15 and that PAs were most effective in preventing deforesta-
tion in Australasia and least effective in Asia, with effectiveness 

positively associated with countries’ gross domestic product (GDP) 
per capita16. This parallels the finding that PA effectiveness at limit-
ing human pressure increases was positively associated with human 
development index17. While PA establishment can lead to increased 
deforestation rates in nearby areas18 (‘leakage’), the opposite out-
come (‘blockage’) is much more common globally19.

Here, we build on this previous research to conduct the first (to 
the best of our knowledge) comprehensive, global analysis of the 
effectiveness of PAs with respect to limiting forest loss. We defined 
PA effectiveness (with regard to limiting deforestation) based on 
deforestation rates within PAs compared with rates in matched con-
trol areas with similar characteristics. We modelled PA deforesta-
tion rates while controlling for background rates in matched control 
areas using a diverse set of predictors, including: nearby population 
densities; reserve size, age and management category; and GDP per 
capita. As geographical variation and local or regional context can 
affect how these predictors relate to deforestation rates, we adopted 
a spatially and non-spatially varying coefficient (SNVC) model-
ling approach, which relaxes the assumption of constant effect 
sizes. By allowing relationships to vary geographically, our analysis  
can shed light on differences in results among previous PA  
effectiveness studies.

From a conservation perspective, regions with high species rich-
ness and carbon storage should ideally have high PA cover and 
effectiveness, because protecting biodiversity and carbon stocks can 
be important functions of PAs20. In addition to our primary model-
ling effort, we derived a national scale index of effective area pro-
tected, which we compared with total forest vertebrate richness and 
carbon stocks across all countries on the global scale. This allows 
for the quantification of how well effective protection aligns with 
biodiversity and carbon sequestration21, and provides a transpar-
ent assessment of which countries are the most under-protected 
given their biodiversity and carbon stocks, and which countries 
have excelled at effective forest protection. This comparative, global 
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assessment complements the current coverage target of protection  
associated with the Aichi Biodiversity Target 11 and other global 
effectiveness evaluations.

While the subject of PA effectiveness has received considerable 
attention in the literature, most previous ecological evaluations of 
PAs have been regional in scope, which precludes testing global 
hypotheses about political and economic predictors of PA effective-
ness. However, there are examples of global studies using either the 
change in human pressure6,17 or biodiversity metrics22–24. Our use 
of a global set of PAs and an SNVC modelling framework allowed 
us to test the relative performance of all forested PAs across the  
full gradients of latitude, population density, GDP per capita and 
other important predictor variables, while accounting for regional 
scale variability. Furthermore, our SNVC modelling approach 
permits testing of whether the effects of these variables vary geo-
graphically or can be treated as constant. Finally, we provide what 
we believe is the first assessment of the degree to which PA effec-
tiveness and coverage are congruent with areas in greatest need 
of protection, including those with the highest biodiversity and 
carbon stocks. We thus provide the first (to the best of our knowl-

edge) global quantitative estimates of the most under-protected  
countries on Earth.

Results
Prior to matching with control areas, our primary PA data-
set contained 25,348 PAs. However, 7,177 (28.3%) of these PAs 
could not be matched with any unprotected pixels having similar 
matching-covariate values. Consequently, after applying coarsened 
exact matching to identify control areas, our final dataset contained 
18,171 PAs, with a total area of 5,293,217 km2 (Fig. 1 and Extended 
Data Fig. 1). Overall, PAs reduced, but did not eliminate, deforesta-
tion; the median annual deforestation rate in control areas (0.54%; 
s.d. = 2.21%) was 4.97 times higher than within PAs (0.11% per 
year; s.d. = 2.45%) (Fig. 2). In absolute terms, the 18,171 PAs in our 
analysis had an average annual forest loss rate of ~1.53 Mha. In our 
analysis, 28.7% of the PAs did not have any forest loss. Among PAs 
with known management category, deforestation rates were high-
est in nonstrict PAs in Africa (0.31% per year), Europe (0.29% per 
year) and South America (0.19% per year), and lowest in strict PAs 
in Oceania (0.02% per year) (Fig. 3). General patterns in PA forest 
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Fig. 1 | Locations of the 18,171 PAs in our main analysis and global deforestation rates. a, PAs are grouped based on their IUCN categories (cat.): Strict (I–
IV), Nonstrict (V–VI) and Unknown. Most of the PAs are located within regions of higher GDP per capita, especially the eastern United States and Europe. 
However, many of these PAs are very small. b, Estimated annual deforestation (tree cover loss) rates are for the period 2001 to 2018. Including PAs from 
all of Earth’s forested regions enabled our analysis to assess geographic variation in effectiveness on the global scale.
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loss for the different continents and levels of protection tended to  
be similar when net forest loss was used instead of total forest loss 
(Fig. 3 and Extended Data Fig. 2).

We identified 9,875 PAs established between 2002 and 2017  
that were suitable for inclusion in our spatiotemporal analysis.  
The establishment of these PAs was associated with a moderate 
increase in the deforestation rate (average = 0.19%; s.e.m. = 0.02%), 
whereas control areas saw a larger increase in the deforestation  
rate (average = 0.61%; s.e.m. = 0.02%) over the same time span 
(Extended Data Fig. 3). This overall pattern was observed for 
both strict and nonstrict PAs in lower and higher GDP countries 
(Extended Data Fig. 3).

Predictors of PA effectiveness. We found all predictors of PA defor-
estation rates to be spatially varying with the exceptions of travel 
time to nearest densely populated area (estimate = 0.066; standard 
error = 0.071; P = 0.356), threatened forest species richness (esti-
mate = 0.080; standard error = 0.037; P = 0.029) and non-threatened 
forest species richness (estimate = 0.018; standard error = 0.004; 
P < 0.001) (Fig. 4 and Extended Data Figs. 4 and 5). Reserve area 
and background (that is, control area) deforestation rate were both 
generally positively associated with PA deforestation, although, in 
both cases, the effects appeared to be stronger in high latitudes and 

weaker in the tropics (Fig. 4). The effects of the other predictors 
were often relatively weak or inconsistent (Extended Data Fig. 4).

National level PA effectiveness scoring. Overall, the mean defores-
tation rate within PAs was 41.1% lower than in control areas (0.62% 
per year compared with 1.05% per year). This is analogous to defor-
estation within PAs occurring at background rates over 58.9% of 
their area and at a rate of 0% over 41.1% of their area, on average  
(0.0062 ≈ 0.411 × 0 + 0.589 × 0.0105). Thus, the 17% Aichi 
Target goal (with 0% PA forest loss) is equivalent to 41.3% of 
land protected after accounting for deforestation within PAs (as 
0.413 × 0.411 ≈ 0.17)—a more than twofold increase.

Globally, 15.7% of forest is formally protected; however, after 
adjusting for deforestation within reserves, this was reduced to only 
6.5%. That is, the 15.7% of forest protected with current defores-
tation rates would have the same total deforestation rate as 6.5% 
protected with no deforestation and 9.2% protected with the con-
trol area mean deforestation rate (0.157 × 0.0062 ≈ 0.065 × 0 + 0.09
2 × 0.0105). Among the 63 countries that we considered, 34 (54%) 
have at least 17% of their forested area protected (Supplementary 
Table 1). However, countries varied greatly in terms of area pro-
tected after adjusting for effectiveness, where effectiveness is 
defined as the ratio of control area deforestation to PA deforestation 
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Fig. 2 | Deforestation rate distributions. Histograms of deforestation rates within PAs (left column) and associated control areas (right column) grouped 
by IUCN category (rows) for the 18,171 PAs in our main analysis. Deforestation rates (2001–2018) are expressed as mean annual rate relative to tree 
cover in 2000. Deforestation rates tended to be greater in control areas, providing evidence of PA effectiveness. Deforestation rate was truncated at 5% 
(covering more than 98% of the data) and log(1 + x) transformed for plotting.
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(Fig. 5 and Supplementary Table 1). These adjusted area protected  
values ranged from 0.03 (China) to 2.36 (New Zealand) (Fig. 5). 
South Africa had the highest effectiveness score, 8.10, indicating 
that PAs there collectively had a greater than eightfold decrease in 
deforestation rates relative to matched control areas (Supplementary 
Table 1). Strikingly, there were no countries with both very high 
PA coverage (adjusted for effectiveness) and high forest species  
richness (Fig. 5).

There was similarly high variation in the species threat index 
(ratio of forest vertebrate species richness to level of protec-
tion after accounting for effectiveness), with values for the seven 
countries with at least 500 forest vertebrate species ranging from 
1,516 (Mexico) to 6,913 (Indonesia). The continents with the high-
est mean adjusted threat indices were South America (2,571), 
Asia (2,196) and Oceania (1,834). The countries with the high-
est deforestation rates were Sierra Leone (2.40% per year; 5.63% 
of forested area protected), Malaysia (2.16% per year; 6.29% pro-
tected) and Cambodia (1.90% per year; 25.85% protected) (Fig. 6 
and Supplementary Table 1). Of the three countries with the great-
est amounts of aboveground forest carbon, Russia had the highest 
threat index for carbon (109), followed by the United States (57) and 
Brazil (29) (Fig. 6 and Supplementary Table 1). The 11 countries 

in our analysis with less than 10% of their forested area protected 
had a total of 72.6 Gt aboveground forest carbon (Supplementary  
Table 1). Forest carbon and total forest species richness were  
moderately correlated (r = 0.37).

Diagnostic and sensitivity analyses. Overall quality of matching 
was high, with absolute standardized biases ranging from 0.004 
for slope to 0.038 for population density. The Rosenbaum bounds 
excluded zero up to Γ = 4, suggesting that our main result about PA 
effectiveness relative to control areas is at least moderately robust to 
hidden biases. When stricter matching criteria were applied (9–10 
classes per continuous matching covariate), the resulting dataset 
size decreased from 18,171 observations to 13,291 observations. For 
this new dataset, the mean deforestation rate in PAs was estimated 
to be 42.7% lower than in control areas (compared with 41.1% with 
our main dataset). Deforestation rate patterns by level of protection 
and geographic region were generally similar (Extended Data Fig. 
6). Overall modelling conclusions about the effects of background 
rate deforestation and reserve size were also similar, although the 
effects of strict protection, reserve age and population density 
(along with travel time) were found to not be spatially varying for 
the smaller dataset (Extended Data Fig. 7).
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Fig. 3 | Forest loss in and around PAs. Results are grouped by geographic region and PA IUCN category. For each PA, the variables shown are PA and 
control area forest loss. Forest loss is for the period 2001–2018 and is expressed as the annual deforestation rate relative to forest cover in 2000. Points 
correspond to median (across PAs) percentage forest loss. Error bar end points are the 1st and 3rd quartiles for this variable. Forest loss within PAs has 
generally been less than in nearby unprotected areas. The overall pattern of forest loss being lower in PAs than in control areas was generally consistent 
across both PA type and geographic region.
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Discussion
PAs have been put forth as an important policy tool to ensure global 
biodiversity conservation and carbon storage in the face of expand-
ing human resource exploitation3. However, limitations to enforce-
ment and monitoring can reduce their effectiveness25–27. Indeed, 
our results indicate that PAs are rarely, if ever, strictly ‘protected’ 
from deforestation, but rather have the effect of slowing forest loss 
in relation to matched control areas (Fig. 3). This is consistent with 
underfunding being common, especially in countries with lower 
GDP per capita where many reserves may lack the equipment, staff 
and resources needed for effective management28–31. Importantly, 
while prevention of deforestation is just one of many potential PA 
management goals, it may be correlated with other metrics of PA 
management success. For example, forest species are expected to 
have reduced likelihood of population declines in PAs with lower 
deforestation rates, either owing to greater forested habitat availabil-
ity, or other benefits of more effective management, such as effec-
tive suppression of illegal hunting. The correlation, albeit moderate, 
between forest biodiversity and carbon stocks provides further 
evidence of potential co-benefits, but also suggests there may be 
important tradeoffs that must be considered when selecting loca-
tions for reserves (Supplementary Table 1).

Earth’s forests are a major carbon sink, with an estimated uptake of 
2.3 Pg C yr−1 between 2000 and 200732. For comparison, the estimated  
total emissions rate over this period was 8.7 Pg C yr−1, of which 
roughly 1.1 Pg C yr−1 was due to tropical land use change32. As PAs 
have the potential to limit deforestation, they can be of use in miti-
gating future climate change as well as protecting biodiversity21. 
Our finding that the effects of PAs on forest loss are highly variable 

has substantial implications for the implementation of carbon pay-
ment systems such as the United Nations’ Reducing Emissions from 
Deforestation and Forest Degradation (REDD+) programme and 
for future payment for environmental services schemes in that there 
is a tradeoff between focusing funding on areas where PAs are com-
mon and effective (but may have less room for improvement) and 
areas where PAs are less common and less effective33. Although the 
actual implementation and impact of REDD+ has been hampered 
by a lack of commitment from the potential funding sources in coun-
tries with higher GDP per capita34, several countries are construct-
ing specific payment for environmental services schemes supported 
by national funds35,36. Such funds could make use of regional threat 
indices similar to those in our analysis (Supplementary Discussion), 
allowing them to identify the most vulnerable hotspots within their 
national PAs and prioritize actions in parks that will have the most 
effective outcomes. Using these fine-scale indices, internal funding 
could be directed towards areas with abundant biodiversity, high 
forest carbon stocks and limited protection.

Larger PAs tended to have higher forest loss rates, even after 
accounting for loss in paired control areas, although this difference 
was lower in tropical regions (Extended Data Fig. 4). This is con-
sistent with previous work that has shown that both budgets and 
staffing on a per-area basis are negatively correlated with reserve 
size37, although costs also have been shown to decline rapidly with 
increasing reserve size31. Thus, PA size may be an especially impor-
tant consideration for biodiverse countries with limited protection, 
which could benefit from both greater area protected and more 
effective protection (Fig. 5 and Supplementary Table 1). Our finding 
on PA size may be partly attributable to controlling for background  
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deforestation rates given that large reserves may tend to be in areas 
with relatively little human impact and thus lower deforestation 
pressure. While strict protection was more effective than nonstrict 
protection in a few small regions, the effect was not spatially robust 
(Extended Data Fig. 4). This may be a consequence of differences in 

levels of use allowed within nonstrict PAs, particularly when they 
overlap communal lands.

After adjusting for effectiveness at limiting deforestation, 
New Zealand scored highest for forest protection (Fig. 5 and 
Supplementary Table 1). In this country, widespread loss of  
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Fig. 5 | Forest biodiversity threat index. a, Number of forest vertebrate species versus area protected adjusted (that is, multiplied) by country-level PA 
effectiveness (based on forest loss in PAs compared with forest loss in matched control areas). The colours indicate the ratio of these variables, which we 
term species threat index, and provide insight into which countries have exceptionally high forest species richness relative to their level of protection.  
b, Threat index map showing only countries with at least 15 PAs in our main analysis, at least 5 forest obligate vertebrates and at least 10,000 km2 forest. 
The adjusted threat index tended to be greatest in the tropics as expected, given the large number of species in these regions.
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indigenous land cover occurred in recent years, but most of this 
loss (93.9%) occurred outside PAs38. This suggests that PAs in New 
Zealand may be particularly effective at preventing deforestation. 
New Zealand also had the second highest PA effectiveness score 
(7.53), after South Africa (8.10). However, these results provide only 
a partial picture because major forest loss occurred in New Zealand 
prior to 200039. Conversely, among countries with at least 1,000 for-
est vertebrate species, Indonesia is notable in that it had both the 
least amount of forested land protected and the highest species 
threat index score (Fig. 5). Biodiversity in Indonesia is under threat 
owing to this country’s high rate of deforestation, increasing oil 
palm production and illegal wildlife trade40. Furthermore, Southeast 
Asia has the greatest proportions of endemic bird and mammal  
species, and the highest rate of forest loss40.

Conservation implications. The species-based threat index that 
we present quantifies countries’ forest vertebrate biodiversity rela-
tive to their levels of protection (Fig. 5 and Supplementary Table 
1). It provides what we believe is the first quantitative measure of 
the extent to which forest biodiversity and protection align. The 
finding that many countries with higher GDP per capita are com-
paratively well protected given their levels of forest biodiversity 
(Fig. 5) is not surprising considering the financial costs of PAs, and 
suggests that economic growth could eventually allow for greater 

protection. Unfortunately, environmental degradation and species 
loss often occur in the early periods of development41, and it may 
be more difficult to reintroduce native species than to increase PA 
area or effectiveness. Consequently, it should not be assumed that 
countries with lower GDP per capita can readily restore biodiversity 
in the long term after income levels increase and forest protection 
measures are enhanced. Similarly, existing forests store substantial 
amounts of carbon (Fig. 6), and their loss may not be easily com-
pensated for (for example, through reforestation), especially over 
short timescales. These timescale differences demonstrate the 
urgent need to expand and strengthen PA networks where they can 
be most beneficial.

The Convention on Biological Diversity’s global PA target (Aichi 
Target 11) sets a global, rather than country-specific, percentage 
goal (17%). While this goal often motivates countries targeting 17% 
protection, based on our threat index, different goals for individual 
countries could instead be advocated, with higher targets in coun-
tries where biodiversity is most threatened42. To achieve these new 
goals, we therefore see it as vital that countries with higher GDP per 
capita provide support for the establishment and maintenance of 
PAs necessary to achieve these higher targets in biodiverse countries 
with lower GDP per capita, ensuring distributional equity in global 
conservation targets. It is critical that such support is provided  
in an equitable way that promotes social justice and sustainable 
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Fig. 6 | Annual deforestation rate and total aboveground forest carbon versus adjusted forested area protected. a,b, Annual deforestation rate (a) and 
total aboveground forest carbon (b) versus adjusted forested area protected. The adjustment was made by multiplying the proportion of forested area 
protected by country-level median PA effectiveness (based on forest loss near PAs compared with forest loss within PAs). The colours indicate the ratios 
of these variables, which we term threat indices (for forest loss and carbon), and provide insight into which countries have exceptionally high deforestation 
rates or forest carbon stocks relative to their levels of protection. The dataset is provided in Supplementary Table 1. DR Congo, Democratic Republic of  
the Congo.
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development, and is not used to justify ignoring the protection of 
less biodiverse areas globally20. While proximate threats to biodiver-
sity tend to be local, the drivers of these threats are often global43. 
Similarly, many potential benefits and co-benefits associated with 
biodiversity are accrued on both local and global scales. Thus, the 
country-specific threat indices reported here highlight human-
ity’s failure to allocate conservation funding, research and other 
resources where they are most needed.

Many biodiverse countries with substantial forest carbon stocks 
are unable to achieve effective conservation in isolation—especially 
given outside demands for their natural resources. One way to 
reduce these demands is through the establishment of multinational 
import bans on deforestation-associated commodities44, which 
must be coupled with internal enforcement and more efficient use 
of forest resources (for example, through technological develop-
ments). Additionally, strategies such as environmental certification 
and labelling schemes could be used to give consumers in wealthy 
countries an opportunity to reward environmentally friendly prac-
tices45. This may be especially effective in reducing the occurrence 
of selective illegal logging, which is often difficult to monitor and 
may be prevalent in large reserves that tend to have high apparent 
deforestation rates and are more likely to be downsized, down-
graded or degazetted46 (Fig. 4). More research is needed to assess 
the possible benefits and drawbacks of import bans and certifica-
tion and labelling schemes—a topic beyond the scope of our pres-
ent analysis. Although global conservation problems require global 
solutions, local factors must also be considered, including how 
conservation programmes can best make use of local knowledge, 
benefit and empower communities, and contribute to long-term 
economic development and poverty reduction47.

As of 2018, 14.9% of land is protected, which is close to the 17% 
Aichi goal48. However, no similar numeric target has been stated 
for PA quality. This creates a policy incentive to value total PA 
area above PA effectiveness49. Unfortunately, deforestation rates in 
large PAs (which cover a sizeable area) seem to be relatively high 
(Fig. 4). To date, more than 40 approaches have been developed to 
assess reserve context, management inputs and design50, involving 
techniques including questionnaires51, selection of focal conserva-
tion targets52 and engagement with stakeholders53. However, such 
assessments do not directly capture outcomes. Thus, estimates of 
PA deforestation rates relative to those in matched control areas rep-
resent a simple, outcome-focused complement to these methods, 
acting as a useful starting point for measuring effectiveness given 
the many co-benefits of reducing deforestation and growing for-
ests to their ecological potential, including increased carbon stor-
age, improved water and air quality, recreation opportunities, and 
reduced erosion54. While we assessed PA deforestation rates rela-
tive to matching control areas, it is important to note that absolute 
deforestation rates can also be of interest. This is especially true in 
cases where background deforestation rates are exceptionally high, 
potentially leading to PAs with moderate deforestation rates being 
identified as highly effective relative to control areas.

By adjusting area protected using a measure of PA effectiveness, 
we have combined PA quantity (area) and quality (effectiveness) 
into a single metric (Figs. 5 and 6). This combination represents a 
small step towards preventing ‘perverse outcomes’, wherein man-
agers optimize PAs using a single, imperfect metric such as total 
area protected5, and can complement existing PA effectiveness 
assessments51,55,56. Taken together, the combination of PA area and 
PA effectiveness can be used to set more robust targets for PAs—an 
important consideration for the upcoming Fifteenth meeting of the 
Conference of the Parties to the Convention on Biological Diversity 
conference, where new biodiversity conservation targets will be set. 
Scientists have called for half of Earth’s surface to be protected57,58. 
Although such direct statements can attract widespread public sup-
port, the success or failure of future protection targets to conserve 

biodiversity and carbon stores will depend on whether or not they 
include sub-targets or goals that can be readily measured, connected 
to species and populations, and achieved in a way that benefits both 
humans and the environment on which we depend.

Methods
We estimated forest change rates within terrestrial PAs using the World Database 
on Protected Areas59 and a set of global forest change maps13. We omitted PAs for 
which forest loss could not be accurately estimated, including recently established 
PAs, exceptionally small PAs and PAs outside forest biomes, using a series of 
filtering steps (Supplementary Methods). We resampled the tree cover (year 
2000), forest loss (2001–2018) and forest gain (2000–2012) maps from ref. 13 to 
1 km × 1 km resolution (Supplementary Methods). We then used forest loss to 
calculate an approximate annual deforestation rate and used forest loss and gain 
together to estimate net deforestation (Supplementary Methods).

We identified associated control areas for PAs using a variant of 1-k coarsened 
exact matching60–62 and eight ‘matching covariates’: elevation, slope, tree cover, 
travel time to nearest densely populated area63, population density64, country, 
ecoregion65 and primary driver of forest cover loss66. Our matched-comparison 
dataset consisted of one observation for each PA (treatment observations) 
and one observation for each 1-km raster pixel more than 10 km from all PAs 
(control observations). We avoided selecting control areas near PAs because 
these regions may have elevated deforestation rates due to local scale leakage 
(that is, displacement of deforestation from PAs to nearby areas as a result of 
protection)18,67,68 and can differ substantially from adjacent PAs, making them 
unsuitable for use as counterfactual scenarios69,70. We first coarsened the combined 
dataset by discretizing continuous variables (Supplementary Methods) and then 
calculated the associated L1 imbalance indicating the extent to which treatment 
and control observations differ with respect to the matching covariates71. We then 
coarsened the dataset again and paired each PA with the set of control observations 
that had the same coarsened covariate values. Finally, we estimated forest loss rates 
within the control areas.

To verify that similar treatment and control units were successful matched, we 
conducted diagnostic and sensitivity analyses62. We first calculated the standardized 
bias for each covariate, which is defined as ðXt � XcÞ=σt

I
, where Xt

I
 is the treatment 

mean, Xc
I

 is the control mean and σt is the treatment standard deviation61. Absolute 
standardized biases greater than 0.25 indicate that the quality of matching may 
be poor61. While standardized bias quantifies similarity with respect to observed 
covariates, there can also be hidden biases owing to unobserved confounding 
variables72. We explored sensitivity with respect to potential hidden biases using 
Rosenbaum bounds that quantify how results vary with respect to the odds of 
assignment (treatment or control) depending on unobserved variables72,73. We did 
this by calculating Rosenbaum bounds for the Hodges–Lehmann point estimate 
using the ‘hlsens’ function in the ‘rbounds’ R package74 where deforestation rates 
were log(x + 10−7) transformed to parallel subsequent modelling analyses. The odds 
of differential assignment due to variables not used for matching, Γ, was allowed to 
vary from 1 to 6 in increments of 1. As a final sensitivity analysis, we recalculated 
our main results after matching using stricter criteria (Supplementary Methods).

As additional modelling covariates, we determined threatened and 
non-threatened forest vertebrate species richness using International Union for 
Conservation of Nature (IUCN) Red List species range maps (Supplementary 
Methods). We also obtained year of establishment (where available), area and 
associated GDP per capita (country level; purchasing power parity, current 
international $) for each PA75. For each country, we used the average GDP per 
capita between 2000 and 2018 (excluding years without data).

The most rigorous test of PA effectiveness is to compare deforestation 
between pre- and post-PA establishment in relation to associated control areas. 
Effectively, this is a ‘before–after, control–impact’ design76. Unfortunately, most 
PAs were established before the origin of global deforestation data, precluding the 
use of this framework for our primary analysis. Nevertheless, nearly 10,000 PAs 
meeting our criteria for inclusion were established between 2002 and 2017, which 
enabled us to adopt this rigorous design for a subset of PAs as a secondary analysis 
(Supplementary Methods).

Statistical modelling and hypotheses. Because the effects of predictors of 
PA deforestation may vary spatially due to differences in regional context, we 
adopted an SNVC modelling approach77–79 (Supplementary Methods). We used 
‘PA deforestation rate’ as the response variable and statistically controlled for 
deforestation rates in control areas by including this variable as a covariate. We 
included six other predictors of deforestation rates: population density, travel 
time to nearest densely populated area, PA age, GDP per capita, management 
category (Strict: IUCN category I–IV; Nonstrict: IUCN category V–VI) and PA 
area (Supplementary Methods). We formed the following set of a priori hypotheses 
based on the PA literature:

 1. Strictly protected PAs have lower deforestation rates than nonstrictly pro-
tected PAs because they are more restrictive in terms of allowed activities7,21,70 
and have experienced limited increases in human pressures6. However, there 
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is also evidence to suggest that Indigenous and other mixed-use PAs can be 
more effective because they may have greater local support14,80.

 2. Larger PAs, which have had lower increases in human pressures6, have lower 
deforestation rates as illegal logging deep inside reserves can be logistically 
challenging81. However, this type of logging is often selective, and thus  
hard to quantify with remotely sensed imagery. Alternatively, larger PAs could 
have higher deforestation rates due to potentially having lower  
budgets per area.

 3. GDP per capita is negatively associated with PA deforestation rates  
because wealthier countries may be better able to fund monitoring and 
enforcement efforts to ensure PA policies are followed. Alternatively, defor-
estation rates could initially rise with GDP per capita (as a consequence of 
increased resource extraction), and then decline (with increasing funding 
available for conservation)—the environmental Kuznets curve hypothesis82. 
This latter hypothesis would be consistent with the effect of GDP per capita 
on deforestation rates being positive in poorer regions and negative in 
wealthier regions.

 4. Time since establishment (that is, PA age) is negatively associated with defor-
estation rates because management infrastructure may (rapidly) increase in 
the years after establishment83.

This list of hypotheses is not exhaustive and, in many cases, we have 
intentionally formed multiple working hypotheses84. Both travel time to nearest 
densely populated area and population density are important measures of potential 
human impacts. However, we did not form a priori hypotheses for these variables 
because it is unclear whether they would have differential impacts on deforestation 
rates in PAs compared with similar unprotected control areas. Similarly, as an 
exploratory analysis, we also tested whether the numbers of threatened and 
non-threatened species were associated with deforestation rates within PAs 
(Supplementary Methods).

Country indices. We used the data on forest loss in and around PAs to explore 
how area protected and PA effectiveness relate to forest obligate species richness, 
forest carbon stocks and deforestation rates within countries. For each country, we 
calculated: (1) forest obligate vertebrate species richness; (2) forest carbon stocks; 
(3) average forest loss rate; (4) overall PA effectiveness (with respect to limiting 
deforestation); and (5) percentage of forested area protected (Supplementary 
Methods). PA effectiveness at the country level was estimated using the ratio of 
the mean deforestation rate in control areas to the mean deforestation rate of PAs 
within the country. For each country, we refer to this ratio as its PA effectiveness 
score. To simplify interpretation, we restricted our scope to countries with at least 
15 PAs in our main analysis, 5 forest obligate vertebrate species and 10,000 km2 of 
forested land.

We then computed the species threat index, which we defined as the ratio 
of forest species richness to proportion of forested area protected multiplied 
by the PA effectiveness score. Countries with high species threat index scores 
have little protection relative to the number of forest species present. Thus, this 
analysis identifies countries where improvements in PA quantity or quality (that 
is, effectiveness at reducing deforestation rates) may have the most beneficial total 
impact on forest biodiversity. We also calculated variants of the species threat index 
score using the overall forest loss rate and (log-transformed) aboveground forest 
carbon biomass in place of species richness.

In summary, we computed the following three threat indices, I, for each 
country:

ISpecies ¼
Species

Prot: ´ Score
; ILoss ¼

Loss
Prot: ´ Score

; ICarbon ¼ log10 Carbonð Þ
Prot: ´ Score

where ‘Species’ is the total number of forest vertebrate species in the country, ‘Prot.’ 
is the proportion of forested land protected, ‘Score’ (a measure of effectiveness) 
is the total forest loss in control areas divided by total forest loss within PAs, 
‘Loss’ is the estimated annual deforestation rate and ‘Carbon’ is the aboveground 
forest biomass in units of Gt C. Each index is strictly positive, with higher values 
indicating potential conservation issues because they suggest that the level of 
protection in a country is not commensurate with its biodiversity, deforestation 
pressure, or forest carbon stocks.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used are publicly available. Sources for the data are given in the Methods 
section.

Code availability
Analysis code is available at https://github.com/wolfch2/PA_matching.
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Extended Data Fig. 1 | The distribution of iuCN categories for the 18,171 PAs in our primary spatial analysis. Protected area categories are: Ia – ‘Strict 
Nature Reserve,’ Ib – ‘Wilderness Area,’ II – ‘National Park,’ III – ‘Natural Monument or Feature,’ IV – ‘Habitat/Species Management Area,’ V – ‘Protected 
Landscape/ Seascape,’ VI – ‘Protected area with sustainable use of natural resources.’ The protected areas were split into ‘Strict’ (categories I-IV), 
‘Nonstrict’ (categories V-VI), and ‘Unknown’ (any other category).
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Extended Data Fig. 2 | Net annual forest loss rate within protected areas and in matched control areas. In contrast to the forest loss results, net loss is 
not a true percentage since loss and gain are binary while cover is continuous (see SI Methods for details). Results are grouped by geographic region and 
PA category (IUCN category I-IV: ‘Strict,’ V-VI: ‘Nonstrict’). Points correspond to median (across PAs) percentage forest loss. Error bar end points are the 
1st and 3rd quartiles for this variable. Forest loss within protected areas has generally been less than in nearby unprotected areas.
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Extended Data Fig. 3 | Change in the annual forest loss rate associated with the creation of PAs. The change variable is the deforestation rate after minus 
before creation of a PA. Results are grouped by geographic region and PA category (IUCN category I-IV: ‘Strict,’ V-VI: ‘Nonstrict’). Points correspond to 
means, and error bars show standard errors.
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Extended Data Fig. 4 | Predictors of deforestation rates within protected areas. Each row shows a different predictor variable, and the columns show 
coefficient estimates, standard errors, and FDR-adjusted p-values. Because a spatially varying coefficient model was used, estimates, etc. can all vary 
geographically. Travel time to nearest densely-populated area was also included as a predictor, but it was found to be non-significant, with no evidence of 
spatial variability. Only coefficients with associated p-value less than 0.05 are mapped.
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Extended Data Fig. 5 | Threatened and non-threatened forest vertebrate species richness. We considered these spatial variables as predictors of 
deforestation within protected areas to explore relationships between PA effectiveness (with respect to limiting deforestation) and biodiversity.
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Extended Data Fig. 6 | Sensitivity analysis exploring the effect of stricter matching criteria. Medians (center points) and 1st and 3rd quartiles (ranges) are 
shown. The first row is for our primary matching dataset (see Fig. 3) based on five classes per continuous matching covariate while the second row shows 
results based on 10 classes per covariate (only 9 were used for travel time – see Supplementary Methods). Overall, the use of stricter matching criteria did 
not appear to considerably alter our results.

NATuRe eCoLoGy & evoLuTioN | www.nature.com/natecolevol

Content courtesy of Springer Nature, terms of use apply. Rights reserved



ArticlesNature ecology & evolutioN ArticlesNature ecology & evolutioN

Extended Data Fig. 7 | Predictors of deforestation rates within protected areas for dataset using stricter matching criteria. Travel time to nearest 
densely-populated area (p=0.20) was not spatially varying and is not shown in order to parallel our main results (Extended Data Fig. 4). Additionally, 
population density, PA age, and strict protection were all found to be constant spatially for this restricted dataset. Only coefficients with associated p-value 
less than 0.05 are mapped.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used (all data are publicly available).

Data analysis We carried out the GIS analysis using Google Earth Engine to download most datasets, R v4.0.3 and Python v3.7.3 with GDAL v2.4.0 for 
general raster processing, Julia v1.4.2 for coarsened exact matching, and R v4.0.3 for statistical modeling and data visualization (with 
‘ggplot2’).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data used are publicly available. Sources for the data are given in the methods section.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This is a global analysis of deforestation rates in protected areas (PAs). The general framework used was a covariate-based matching 
method where deforestation rates in PAs are compared to deforestation rates in matched control areas that serve as a baseline.

Research sample Not applicable (we used a database of more than 18,000 protected areas).

Sampling strategy Not applicable (no sampling was conducted).

Data collection The primary data source is an existing, public database of protected areas (WDPA). Other data sources are also publicly available.

Timing and spatial scale We considered protected areas (PAs) established in 2000 or earlier for our main analysis and PAs established between 2002 and 
2017 for a before-after comparison. Forest change data range from 2001 to 2018. The PA data are global but restricted to forest 
biomes.

Data exclusions We did not collect new data for this project. As noted in the SI, we "excluded PAs from our primary analysis that: [1] had point 
(centroid) information only, [2] were exclusively marine, [3] were established after 2000 since the forest loss data range from 2001 to 
2018, [4] had area less than 1 km2 since forest change in small PAs can be hard to estimate accurately, [5] were entirely outside of 
the forest change maps’ common extent, [6] had no land with forest change data within their boundaries, [7] were entirely outside of 
forest biome(s), [8] had less than 30% forest cover across their entire extents, or [9] could not be matched with appropriate control 
areas."

Reproducibility Not applicable (no experiments were conducted).

Randomization Not applicable (we used all suitable data in a database of protected areas).

Blinding Not applicable (this is a global analysis of protected areas).

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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